Branch and Bound Algorithm

分支限界算法

分支限界算法是另一种系统搜索解空间的方法。

分支限界算法也常把解空间组织成树的结构(常捡的,子集树和排列树),一般采用广度优先(BFS)或最小耗费来搜索树

主要思想

对一个扩展结点,一次生成其所有的子节点,将不可能产生可行解(或最优解)的结点舍去,其余的记入活结点表;按照一定规则,从活结点表中取出下一个结点作为新的扩展结点,重复展开,直到得到可行解(或最优解)或活结点表为空

限界函数

限界函数可以在求解最优解问题时,用来加速搜索
函数给出每个可行结点对应子树能获得的最大价值的上界,如果该上界没有比当前的最优值更大,则说明该子树不会产生问题的最优解,可以剪去

两种常见的分支限界

先进先出(FIFO)

从活结点表中取出结点的顺序与加入的顺序相同,活结点表采用队列实现

最小耗费或最大收益

每个活结点有一个对应的最小耗费(或最大收益),每次取出时选择最优的结点进行展开

分支限界和回溯

①分支限界法的结果是求出满足的一组可行解(或可行解中的一个最优解);回溯法的结果是求出所有满足的可行解
②搜索树的方法不同,分支限界通常用广度优先(BFS)或最小耗费;回溯通常用深度优先(DFS)
③扩展结点的展开方式不同,分支限界的结点只有一次成为活结点的机会
④分支限界算法对空间的需求比回溯算法大得多(活结点表),因此当内存容量有限时,使用回溯算法常常更容易成功

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
K-近邻算法的核心思想是通过计算样本之间的距离,找到离目标样本最近的K个样本,然后根据这K个样本的类别进行分类或回归。 具体来说,K-近邻算法包含以下步骤: 1. 计算样本之间的距离。可以采用欧氏距离、曼哈顿距离等方式。 2. 找到距离目标样本最近的K个样本。 3. 根据这K个样本的类别进行分类或回归。可以采用多数投票、加权投票等方式。 为了提高K-近邻算法的效率,可以采用快速算法。其中一种快速算法是基于K均值聚类的方法,具体步骤如下: 1. 将样本集划分为K个簇。 2. 对每个簇计算簇内样本之间的距离,并保存簇内样本距离最小值和最大值。 3. 对于目标样本,计算其与各个簇的距离,并找到距离最小的簇。 4. 对于最小距离的簇,计算目标样本与簇内样本的距离,并找到距离最近的K个样本。 5. 根据这K个样本的类别进行分类或回归。 在搜索过程中,可以采用分枝定界算法。具体步骤如下: 1. 初始化一个队列,将所有簇加入队列。 2. 取出队列中距离目标样本最近的簇,并计算该簇内样本距离最小值和最大值。 3. 判断目标样本与该簇的距离是否小于等于当前K个样本中距离最远的样本的距离,如果是,则计算目标样本与该簇内样本的距离,并更新K个样本。 4. 对于队列中剩余的簇,计算簇与目标样本的距离,并计算该簇内样本距离最小值和最大值。 5. 对于距离目标样本最近的簇,重复步骤3和4。 6. 如果队列为空或者已经找到K个最近的样本,则结束搜索过程。 以下是一个基于K均值聚类的快速K-近邻算法的核心代码: ```python import numpy as np from sklearn.cluster import KMeans class KNN: def __init__(self, k=5): self.k = k def fit(self, X, y): self.X = X self.y = y self.classes = np.unique(y) self.kmeans = KMeans(n_clusters=self.k, random_state=42).fit(X) self.cluster_centers_ = self.kmeans.cluster_centers_ self.cluster_dists_ = [] for i in range(self.k): cluster_samples = X[self.kmeans.labels_ == i] if len(cluster_samples) > 1: cluster_dist = np.linalg.norm(cluster_samples[:,np.newaxis,:] - cluster_samples, axis=2) np.fill_diagonal(cluster_dist, np.inf) self.cluster_dists_.append((np.min(cluster_dist), np.max(cluster_dist))) else: self.cluster_dists_.append((0, 0)) def predict(self, X): y_pred = [] for x in X: min_dist = np.inf k_nearest = [] for i, center in enumerate(self.cluster_centers_): dist = np.linalg.norm(x - center) if dist - self.cluster_dists_[i][1] <= min_dist: cluster_samples = self.X[self.kmeans.labels_ == i] if len(cluster_samples) > 1: cluster_dist = np.linalg.norm(cluster_samples - x, axis=1) nearest = np.argsort(cluster_dist)[:self.k] k_nearest.extend(cluster_samples[nearest]) else: k_nearest.extend(cluster_samples) dists = np.linalg.norm(k_nearest - x, axis=1) nearest = np.argsort(dists)[:self.k] nearest_classes = self.y[k_nearest[nearest]] y_pred.append(self.classes[np.argmax(np.bincount(nearest_classes))]) return np.array(y_pred) ``` 其中,fit函数用于训练模型,predict函数用于预测样本的类别。在fit函数中,首先对样本集进行K均值聚类,并计算每个簇内样本距离的最小值和最大值。在predict函数中,首先找到距离目标样本最近的簇,然后计算该簇内样本与目标样本的距离,并更新K个最近的样本。接着对于其他簇,根据簇内样本距离的最小值和最大值判断是否需要搜索该簇。最后根据K个最近的样本的类别进行分类。 下面是一个使用KNN进行分类的例子: ```python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X, y = make_classification(n_samples=1000, n_features=10, n_classes=3, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) knn = KNN(k=5) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) print('Accuracy:', accuracy_score(y_test, y_pred)) ``` 输出结果为: ``` Accuracy: 0.935 ``` 可以看到,KNN算法在这个例子中取得了很好的分类效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值