动态规划【数据结构与算法笔记2】

这篇博客记录了作者在学习北大数据结构与算法公开课中关于动态规划解决数字三角形问题的心得。作者通过四种方法(深度优先递归、动态规划、递推法和结合指针递推)进行了讲解,并探讨了它们的时间和空间复杂度。文章强调了系统学习算法的重要性,以及如何通过优化减少重复计算。最后,作者以Python代码展示了动态规划的解决方案。
摘要由CSDN通过智能技术生成

注:2019-09-09,我的学习路程真是挺好玩,半路折回来要补一补算法知识。
为了提高效率,选择了北大数据结构与算法公开课,而不是自学或者好评更多的其他国外课程【听力比教差,费劲且没必要】

1,数字三角形问题

因为是学习日志,这里不做介绍,只写代码【cpp/python】。建议看到我博客的倒霉蛋,直接去课程听讲 点这里

1-1:基于深度优先的普通递归

复杂度:0( 2 n 2^n 2n) 很差,递归涉及到了大量的重复计算

#include<algorithm>
#define MAX 101
using namespace std;
int D[MAX][MAX];
int n;

int MaxSum(int i, int j){
	if (i == n)
		return D[i][j];
	int maxa = MaxSum(i, j);
	int maxb = MaxSum(i, j+1);
	
	return max(maxa, maxb) + D[i][j];
		 
}

int main(){
	int i, j;
	cin n;
	for (i=1; i<=n; i++)
		for (j=1; j<=i; j++)
			cin >> D[i][j];
	
	cout << MaxSum(1, 1) << endl;		
	return 0;
}
  
1-2 动态法【添加额外数组进行存储】

复杂度:0( n 2 n^2 n2)
这里回想一下大一寒假在小甲鱼那初学python的时候,一道比较难的课后习题,我就是使用了额外数组保存的方法,当时印象很深。所以一直有种感觉,很多知识你其实是知道的,之前也是不经意间用过,而系统的学习这些课程,会给你一种 this feeling i can not describe…

代码改进:
注意:maxSum的元素是当前位置遍历到最后一行的值!(深度优先)

int D[MAX][MAX];
int maxSum[MAX][MAX]; // 改动
int n;

int MaxSum(int i, int j){
	if (maxSum[i][j] != -1)   //改动
		return maxSum[i][j]; // 因为已经计算过,直接返回 
	if (i == n)
		return D[i][j];
	int maxa = MaxSum(i, j);
	int maxb = MaxSum(i, j+1);
	
	return max(maxa, maxb) + D[i][j];
		 
}

int main(){
	int i, j;
	cin n;
	for (i=1; i<=n; i++)
		for (j=1; j<=i; j++)
			cin >> D[i][j];
			maxSum[i][j] = -1; //  改动,初始化所有结果皆为-1,方便后面函数判断 
	
	cout << MaxSum(1, 1) << endl;		
	return 0;
}

可以看出,以空间复杂度为代价优化了时间复杂度,不过并不亏

2 递推法

递归这玩意,… 不多说了,装哔小能手吧
递推主要思想:自底向上计算,因为如果按照自顶向下会有很多分叉,根本无法递推实现,或者又要走重复计算的老路子

我直接截图了,老师对不起
在这里插入图片描述

代码(个人),初学cpp,最好别看:


#define MAX 101
using namespace std;
int D[MAX][MAX];
int maxSum[MAX][MAX];
int n;
// 递推-自底向上
int MaxSum(int D[][], int maxSum[][], int n){
	
	for (i = n-1; i>=1; --i)
		for (j = 1; j<=n; ++j)
			if (i == n)
				maxSum[i][j] = D[i][j];
			else	
				maxSum[i][j] = 
					max(maxSum[i+1][j], maxSum[i+1][j+1]) + D[i][j];
	return maxSum[1][1];
		
}

int main(){
	int i, j;
	cin >> n;
	// 初始化数字三角形 
	for(i=1; i<=n; i++)
		for (j=1; j<=i; j++)
			cin >> D[i][j];
	
	cout << MaxSum(D, maxSum, n) << endl;
	return 0; 
} 
3结合指针递推

优化空间,时间复杂度不变
主要是,不再额外的创建二维数组来保存结果,因为是自底向上的原因,下面一行在计算之后就不再使用,所以没必要保存,所以这里将三角形的底边作为存储的地方,并且不影响结果【每次的结果都保存在底边】,实现了 时间,空间的优化

# define Max 101
int main()
{
	int D[Max][Max];
	int n;
	int * maxSum;
	
	cin >> n;
	for (int i=1; i<=n; i++)
		for (int j=1; j<=i; j++)
			cin >> D[i][j];
			
	maxSum = D[n]; // maxSum指针定位到D的第n行
	for (int i=n-1; i>=1; --i)
		for (int j=1; j<=i; ++j)
			maxSum[j] = max(maxSum[j], maxSum[j+1]) + D[i][j]; 
	cout << maxSum[1] << endl;
	return 0;
  }  
4 python版

写到最后怎么能少得了我的母语呢 :)

import numpy as np
D = np.random.randint(10, size=(5, 5)).tolist()  #随机初始化矩阵
D = np.tril(D, 0)  #设置为下三角矩阵
for i in range(len(D)-2, -1, -1):  #  直接在原矩阵上计算
    for j in range(i+1):
        D[i][j] = max((D[i][j]+D[i+1][j]), (D[i][j]+D[i+1][j+1]))

总结:人生苦短,我用python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值