深度学习中常见的九种交叉验证方法汇总

目录

1. K折交叉验证(K-fold cross-validation)

2. 分层K折交叉验证(Stratified K-fold cross-validation)

3. 时间序列交叉验证(Time Series Split)

4. 留一交叉验证(Leave-One-Out Cross-Validation,LOOCV) 

5. 留P交叉验证(Leave-P-Out Cross-Validation,LPOCV)

6. 重复K折交叉验证(Repeated K-Fold Cross-Validation)

7. 留出交叉验证(Holdout Cross-Validation)

8. 自助采样交叉验证(Bootstrap Cross-Validation)

9. 蒙特卡洛交叉验证(Monte Carlo Cross-Validation)

10. 重复随机子采样交叉验证(Repeated Random Subsampling Cross-Validation)


方法 任务类型 划分方式 计算量 优点 缺点 适用场景
K折交叉验证 通用 将数据集分为 K 个子集,每次选取一个子集作为验证集 中等 充分利用数据,可以更准确地评估模型性能 计算量较大 通用
分层K折交叉验证 通用 类似于 K 折交叉验证,但保持每个折中类别比例 中等 对于不平衡数据集,保证了每个折中的类别比例 计算量较大 数据不平衡时
时间序列交叉验证 时间序列数据 根据时间顺序划分数据,保证训练集在测试集之前 考虑了时间序列数据的顺序性,适合于时间序列预测任务 不适用于非时间序列数据 时间序列预测任务
留一交叉验证 通用 每次将一个样本作为验证集 最大程度利用数据,评估结果准确 计算量巨大,效率低下 数据集较小时
留P交叉验证 通用 每次留下 P 个样本作为验证集 可以自定义留下的样本数量 P,适用于不同情况 计算量较大,效率低下 数据集较小时
重复K折交叉验证 通用 对 K 折交叉验证进行多次重复 提供更稳健的评估结果,减少因随机性引起的评估误差 计算量更大 需要更加稳健的评估结果
留出交叉验证 通用 将数据集划分为训练集和测试集,通常使用固定比例 计算量低,简单易用 不充分利用数据 数据集较大时
自助采样交叉验证 通用 通过自助采样的方式随机采样训练集 充分利用数据,对于小样本数据集效果好 计算量较大,可能会产生相似的训练样本,引入估计偏差 数据集较小,或者需要处理小样本数据时
蒙特卡洛交叉验证 通用 随机重复采样和验证 可以得到对数据的全面评估 计算量非常大 需要对模型进行全面评估时
重复随机子采样交叉验证 通用 通过随机
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值