深度学习中几种常见数据标准化方法

目录

一、介绍

二、总结

三、详情 

1. StandardScaler

2. MinMaxScaler

3. RobustScaler

4. MaxAbsScaler

5. Normalizer

6. QuantileTransformer

7. PowerTransformer

8. Log Transform

四、示例 

五、心得


一、介绍

方法名称 缩放范围 适用条件
StandardScaler 均值为0,方差为1 数据具有正态分布的情况下效果最佳
MinMaxScaler [0, 1] 数据分布不平衡或有明显的上下界限
RobustScaler 根据四分位数缩放 数据包含异常值
MaxAbsScaler [-1, 1] 数据已经中心化,即没有偏移
Normalizer 每个样本的范数为1 样本之间有显著的差异,需要将其归一化
QuantileTransformer [0,1]或正态分布 数据分布不均匀
PowerTransformer (Yeo-
Johnson)
均值为0,方差为1 数据具有正态分布或接近正态分布
Log Transform 非负数据的对数缩放 数据必须为正值或非负值

二、总结

  • StandardScaler:适用于数据本身的分布近似正态分布,通过将数据缩放到均值为0、方差为1,消除不同特征的量纲影响。
  • MinMaxScaler:将数据缩放到指定的最小值和最大值(默认是0和1)之间,适合数据分布有明显上下界的情况。
  • RobustScaler:基于四分位数进行缩放,对于异常值不敏感,适用于数据包含离群点的情况。
  • MaxAbsScaler
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值