目录
一、介绍
方法名称 | 缩放范围 | 适用条件 |
---|---|---|
StandardScaler | 均值为0,方差为1 | 数据具有正态分布的情况下效果最佳 |
MinMaxScaler | [0, 1] | 数据分布不平衡或有明显的上下界限 |
RobustScaler | 根据四分位数缩放 | 数据包含异常值 |
MaxAbsScaler | [-1, 1] | 数据已经中心化,即没有偏移 |
Normalizer | 每个样本的范数为1 | 样本之间有显著的差异,需要将其归一化 |
QuantileTransformer | [0,1]或正态分布 | 数据分布不均匀 |
PowerTransformer (Yeo- Johnson) |
均值为0,方差为1 | 数据具有正态分布或接近正态分布 |
Log Transform | 非负数据的对数缩放 | 数据必须为正值或非负值 |
二、总结
- StandardScaler:适用于数据本身的分布近似正态分布,通过将数据缩放到均值为0、方差为1,消除不同特征的量纲影响。
- MinMaxScaler:将数据缩放到指定的最小值和最大值(默认是0和1)之间,适合数据分布有明显上下界的情况。
- RobustScaler:基于四分位数进行缩放,对于异常值不敏感,适用于数据包含离群点的情况。
- MaxAbsScaler