【2025最新整理】ResNet 系列网络的演进及其创新

目录

1. Wide ResNet(2016年)

3. ResNeXt(2017年)

4. SENet(2018年)

5. ResNet-D(2018年)

6. ResNeSt(2020年)

7. RegNet(2020年)

8. TResNet(2020年)

9. ResNet-RS(2021年)

          总结

所有论文已上传至github


        自ResNet系列网络问世以来,深度学习领域经历了多次革新,每一代变体在原始ResNet架构基础上进行了不同的改进和优化,使得深度神经网络的性能和效率得到了显著提升。以下将详细介绍ResNet的各个重要变体及其关键创新。

1. Wide ResNet(2016年)

        Wide ResNet提出了一种通过增加网络宽度(即增加每层通道数)来提升模型性能的思路,而非通过加深网络层数。相比于单纯的深度增加,网络宽度的扩展可以在减少训练时间的同时提高模型的表达能力。这种架构特别适合处理高分辨率图像,因为其宽度提升在一定程度上改善了信息传递效率,能够在保证精度的前提下兼顾计算效率,进而在多个视觉任务上表现优异。

发表论文:《Wide Residual Networks》

发布年份:2016

会议:BMVC 2016

2. DenseNet(2016年)

        DenseNet(Densely Connected Convolutional Networks)通过密集连接的设计,极大地促进了信息和梯度的流动。其创新之处在于让每一层的输出不仅直接传递给下一层,还传递给所有后续层,从而缓解了梯度消失问题,并且大幅减少了网络参数。这种密集连接使得模型的特征重用得到了最大化,既提高了网络的效率,也减小了内存需求,使网络更加轻量高效。

发表论文:《Densely Connected Convolutional Networks》

发布年份:2016

会议:CVPR 2017

3. ResNeXt(2017年)

        ResNeXt在ResNet基础上引入了分组卷积和堆叠的残差单元结构,以提高深度学习模型的准确性,同时控制模型复杂度。该架构借鉴了VGG网络的堆叠思想和Inception网络的split-transform-merge策略,提出了“cardinality”概念,即通过增大通道数而不是简单的加深网络宽度来增强模型性能。ResNeXt因其独特的结构,在多个计算机视觉任务上取得了令人瞩目的效果。

发表论文:《Aggregated Residual Transformations for Deep Neural Networks》

发布年份:2017

会议:CVPR 2017

4. SENet(2018年)

        SENet(Squeeze-and-Excitation Networks)在ResNet架构上引入了Squeeze-and-Excitation模块,该模块能够自适应地调整不同通道的重要性。具体来说,SENet会对每一通道进行“压缩(squeeze)”和“激励(excitation)”操作,从而自动提升重要通道的权重,并减弱次要通道的影响。这种注意力机制的引入,使模型在保持轻量化的同时,能够显著提升表达能力和精度。

发表论文:《Squeeze-and-Excitation Networks》

发布年份:2018

会议:CVPR 2018

5. ResNet-D(2018年)

        ResNet-D通过对下采样模块的改进,增强了网络在特征提取上的平滑性,尤其适用于图像分类任务。该结构利用了更优化的特征提取方式,提升了特征表示的精度,从而在多个分类任务上实现了性能提升。ResNet-D的设计基于优化残差网络的基础结构,使得模型在不增加复杂度的前提下取得了性能增益。

发表论文:《Bag of Tricks for Image Classification with Convolutional Neural Networks》

发布年份:2018

会议:CVPR 2019

6. ResNeSt(2020年)

        ResNeSt(Split-Attention Networks)的核心创新是Split-Attention模块,该模块结合了Squeeze-and-Excitation模块的思想,通过在网络的特征图上执行分割和并行处理,增强了模型的注意力机制。该结构使得网络能够在不同特征区域之间有效地分配关注力,从而实现更高效的信息捕捉,在图像分类、检测等任务上表现出了显著的性能优势。

发表论文:《ResNeSt: Split-Attention Networks》

发布年份:2020

会议:CVPR 2020

7. RegNet(2020年)

        RegNet是一种通过搜索空间设计网络的架构方法,其重点在于基于正则性原则来系统化地设计网络结构。RegNet不再依赖人工设计网络,而是通过参数化的设计策略来生成网络的宽度和深度,形成一系列正则曲线,这种方式能够在计算成本和模型性能之间取得良好的平衡。RegNet的设计方法引领了深度学习模型结构的自动化设计潮流。

发表论文:《Designing Network Design Spaces》

发布年份:2020

会议:CVPR 2020

8. TResNet(2020年)

        TResNet(Transformer-ResNet)是一种专为高效推理任务设计的ResNet变体,特别适用于大规模数据集上的高性能图像分类任务。该架构结合了改进的残差模块和动态调度等技术,能够在GPU和TPU上高效地运行。TResNet在保持高精度的前提下显著减少了推理时的计算资源需求,尤其在实时应用场景中表现出色。

发表论文:《TResNet: High Performance GPU-Dedicated Architecture》

发布年份:2020

9. ResNet-RS(2021年)

        ResNet-RS在网络结构优化的基础上,结合了更加先进的训练和缩放策略,如Mixup和标签平滑等正则化技术,以及自动数据增强技术,显著提升了模型在ImageNet上的表现。这种改进使得ResNet-RS不仅在精度上达到了新高度,同时在模型的训练效率和稳定性上也有明显提升。

发表论文:《ResNet strikes back: An improved training procedure in timm》

发布年份:2021

总结

        ResNet系列的每一个变体都基于不同的创新思路,对网络的结构、特征提取方式以及注意力机制进行了多样化的探索。从Wide ResNet的宽度扩展到SENet的通道自适应,再到RegNet的自动化设计,ResNet系列在不断拓展和优化网络结构的同时,也推动了深度学习在计算机视觉领域的应用和发展。这些变体在各自的设计思路上独具特色,成为了现代深度神经网络设计的重要里程碑。

所有论文已上传至github

1552186151/ResNet-EfficientNet-MobileNet-Architectural-Innovations: ResNet、EfficientNet和MobileNet系列网络的演进及其创新icon-default.png?t=O83Ahttps://github.com/1552186151/ResNet-EfficientNet-MobileNet-Architectural-Innovations

### 关于 ResNet-50 的模型架构 ResNet-50 是一种深度卷积神经网络,属于 ResNet 系列中的一个中间深度模型。该模型包含 50 层网络结构,具体而言,它由 4 组残差块构成,这些组分别含有 3、4、6 和 3 个残差块[^2]。 除了上述分组外,ResNet-50 还包括最开始的一个独立的卷积层和最终的全连接层,这使得整个网络达到了总计 50 层的深度。这种设计通过引入跳跃连接解决了深层网络训练过程中遇到的梯度消失问题,从而提高了性能并促进了更深层次的学习能力。 ```python import torchvision.models as models resnet50 = models.resnet50(pretrained=True) print(resnet50) ``` 这段 Python 代码展示了如何加载预训练好的 ResNet-50 模型,并打印其完整的内部结构以便观察各个组件之间的关系及其参数配置情况[^1]。 ### 实现方法 为了修改或扩展已有的预训练 ResNet-50 模型,可以按照如下方式进行操作: - **调整分类头**:如果目标数据集类别数目不同于 ImageNet(即原始 ResNet 训练所使用的数据集),则需更改最后一层全连接层以适应新的标签空间大小。 - **冻结部分权重**:对于某些特定应用场景下的微调任务,可以选择性地冻结早期几层甚至全部基础特征提取器的权值更新过程,仅允许顶部新增加的部分参与反向传播优化计算。 - **自定义模块插入**:依据实际需求,在保持原有框架不变的前提下,可以在不同位置加入额外的功能单元比如注意力机制等来增强表达力或者改进特性捕捉效率。 ### 应用实例 ResNet-50 广泛应用于图像识别领域内多个子方向上,例如物体检测、语义分割以及其他视觉理解相关课题研究当中。由于具备良好的通用性和强大的表征学习潜力,因此也被视为许多先进算法的基础骨干网之一。此外,得益于 PyTorch 及 TensorFlow 等主流机器学习库对其良好支持,开发者能够方便快捷地获取到高质量开源实现版本来进行快速原型开发与实验验证工作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值