R-建模(广义)线性(加性、混合)模型

1、R 中的简单线性模型

Y i = β 0 + β 1 X i + ϵ i , ϵ i ∼ N ( 0 , σ 2 ) Y_i = \beta_0 + \beta_1X_i + \epsilon_i , \epsilon_i \sim N(0,\sigma^2) Yi=β0+β1Xi+ϵi,ϵiN(0,σ2)

mod <- lm(formula = mpg ~ wt,data = mtcars)
#mod <- lm(formula = mpg ~ wt + 0,data = mtcars) ### 生成不带截距项的简单线性模型
summary(mod)

模型详情页

Multiple R-squared:在一元线性回归中,Pearson相关系数R的平方等于线性回归的R²(Multiple R-squared)。这是因为在一元线性回归中,只有一个自变量和一个因变量,因此两个变量之间的线性相关程度和自变量对因变量的解释程度是一致的。但在多元线性回归中,Pearson相关系数R和线性回归的R²可能不相等,因为多元线性回归中有多个自变量,而Pearson相关系数R只能衡量两个变量之间的线性相关程度。

提取 β 1 \beta_1 β1 的97.5% 置信区间 :

mod$coefficients[[2]] - qnorm(0.975) * summary(mod)$coefficients[2,2]
mod$coefficients[[2]] + qnorm(0.975) * summary(mod)$coefficients[2,2]

预测新的数据predict(mod,newdata = data.frame(wt = c(1,2,3))) ### 返回一个 vector 数据类型

2、R 中的多元线性模型

2.1 多元线性模型

Y i = β 0 + β 1 X i + β 2 X j + . . . + ϵ i , ϵ i ∼ N ( 0 , σ 2 ) Y_i = \beta_0 + \beta_1X_i + \beta_2X_j + ... + \epsilon_i , \epsilon_i \sim N(0,\sigma^2) Yi=β0+β1Xi+β2Xj+...+ϵi,ϵiN(0,σ2)

mod <- lm(formula = mpg ~ wt + hp + am,data = mtcars)  #formula = y~.  表示纳入数据框的所有变量进行多元线性回归
summary(mod)


Multiple R-squared: 随着变量的增加,模型的拟合优度始终提升;
Adjusted R-squared: 根据变量数目进行调整R²,在多变量的前提下能更准确地反映模型的拟合优度,同时暗示变量不是越多越好。

由于R²无法回答模型是否统计显著的问题,进而提出了基于模型F统计量检验: F = M S E M S M F = \frac {MSE}{MSM}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪桦

有帮助的话请杯咖啡吧,谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值