1) 图与树的关系和转化
2) 图的基本遍历
3) 利用树的性质
4) 线段树与并查集介绍
例1【求连通性】
给定一个方阵,定义连通:上下左右相邻,并且值相同。
可以想象成一张地图,不同的区域被涂以不同颜色。
输入:
整数N, (N<50)表示矩阵的行列数
接下来N行,每行N个字符,代表方阵中的元素
接下来一个整数M,(M<1000)表示询问数
接下来M行,每行代表一个询问,
格式为4个整数,y1,x1,y2,x2,
表示(第y1行,第x1列) 与 (第y2行,第x2列) 是否连通。
连通输出true,否则false
例如:
10
0010000000
0011100000
0000111110
0001100010
1111010010
0000010010
0000010011
0111111000
0000010000
0000000000
3
0 0 9 9
0 2 6 8
4 4 4 6
程序应该输出:
false
true
true
解析:这是图的深度优先遍历的典型应用
public class Main {
public static boolean lian_tong(char[][]data,int y1,int x1,int y2,int x2) {
if(y1==y2 && x1==x2 )
return true;
char old = data[y1][x1];
data[y1][x1] = '*';//标记已访问的点,试探
try{
if(y1<data.length-1 && data[y1+1][x1]==old && lian_tong(data,y1+1,x1,y2,x2))
return true;
if(y1>0 && data[y1-1][x1]==old && lian_tong(data,y1-1,x1,y2,x2))
return true;
if(x1>0 && data[y1][x1-1]==old && lian_tong(data,y1,x1-1,y2,x2))
return true;
if(x1<data.length-1 && data[y1][x1+1]==old && lian_tong(data,y1,x1+1,y2,x2))
return true;
}
finally {
data[y1][x1] = old;//回溯
}
return false;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
//n:矩阵的行列式
int n=Integer.parseInt(sc.nextLine());
//输入n行n列,用二维数组接收
char [][] data=new char[n][];
for(int i=0;i<n;i++){
data[i]=sc.nextLine().toCharArray();
}
//计算n次是否连通
int m=Integer.parseInt(sc.nextLine());
for(int i=0;i<m;i++) {
String []s=sc.nextLine().split(" ");
int x1=Integer.parseInt(s[0]);
int y1=Integer.parseInt(s[1]);
int x2=Integer.parseInt(s[2]);
int y2=Integer.parseInt(s[3]);
System.out.println(lian_tong(data,x1,y1,x2,y2));
}
}
}
例2【迷宫问题-最短路径】
如下图的迷宫,入口,出口分别:左上角,右下角
"1"是墙壁,"."是通路
求最短需要走多少步?
...11111111111111111111111111111
11.111111........1111111111.1111
11.111111..111.11111111.....1111
11.11111111111.1111111111.111111
11.111111.................111111
11.111111.11111111111.11111.1111
11.111111.11111111111.11111..111
11..........111111111.11111.1111
11111.111111111111111.11....1111
11111.111111111111111.11.11.1111
11111.111111111111111.11.11.1111
111...111111111111111.11.11.1111
111.11111111111111111....11.1111
111.11111111111111111111111.1111
111.1111.111111111111111......11
111.1111.......111111111.1111.11
111.1111.11111.111111111.1111.11
111......11111.111111111.1111111
11111111111111.111111111.111...1
11111111111111...............1.1
111111111111111111111111111111..
解析:图的广度优先遍历的典型应用
public class Main {
static int f(char[][] data, Set<String> from, String goal) {
if(from.contains(goal))
return 0;
Set<String> set = new HashSet();//存储from相邻的所有未访问点
for(String s:from){
String[]ss = s.split(",");
int y = Integer.parseInt(ss[0]);
int x = Integer.parseInt(ss[1]);
if(y>0 && data[y-1][x]=='.'){
set.add(y-1 + ","+ x);
data[y-1][x]='*';
}
if(y<data.length-1 && data[y+1][x]=='.'){
set.add(y+1 + ","+ x);
data[y+1][x]='*';
}
if(x>0 && data[y][x-1]=='.'){
set.add(y + ","+ (x-1));
data[y][x-1]='*';
}
if(x<data[0].length-1 && data[y][x+1]=='.'){
set.add(y + ","+ (x+1));
data[y][x+1]='*';
}
}
if(set.isEmpty())
return -1;
int r = f(data,set,goal);
if(r<0)
return -1;
return r+1;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);//21 32
String []ss = sc.nextLine().trim().split(" +");
int m = Integer.parseInt(ss[0]);
int n = Integer.parseInt(ss[1]);
char [][] data = new char[m][];
for(int i=0;i<m;i++) {
data[i] = sc.nextLine().toCharArray();
}
Set<String> from = new HashSet();
from.add("0,0");
System.out.println(f(data,from,m-1+","+(n-1)));//61
}
}
例3【分酒问题】
有4个红酒瓶子,它们的容量分别是:9升, 7升, 4升, 2升
开始的状态是 [9,0,0,0],也就是说:第一个瓶子满着,其它的都空着。
允许把酒从一个瓶子倒入另一个瓶子,但只能把一个瓶子倒满或把一个瓶子倒空,不能有中间状态。
这样的一次倒酒动作称为1次操作。
假设瓶子的容量和初始状态不变,对于给定的目标状态,至少需要多少次操作才能实现?
本题就是要求你编程实现最小操作次数的计算。
输入:最终状态(空格分隔)
输出:最小操作次数(如无法实现,则输出-1)
例如:
输入:
9 0 0 0
应该输出:
0
输入:
6 0 0 3
应该输出:
-1
输入:
7 2 0 0
应该输出:
2
解析:图的广度遍历求最短步骤(与上题相似):将瓶子的初始容量看成一个状态,倒酒后看成另一个状态,每个状态都看成一个结点(状态一定是有限的)
public class Main {
static int f(Set<String> history,Set<String> from, String goal) {
if(from.contains(goal))
return 0;
Set<String> set = new HashSet<>();
for(String s:from){
set.addAll(move(s));
}
set.removeAll(history);
if(set.isEmpty())
return -1;
history.addAll(set);
int r = f(history,set,goal);
if(r<0)
return -1;
return r+1;
}
static Set<String> move(String s){
final int[]cap ={9,7,4,2};
Set<String> set = new HashSet<>();
String[]ss = s.split(" ");
int [] data = new int[4];
for(int i=0;i<4;i++)
data[i] = Integer.parseInt(ss[i]);
for(int i=0;i<4;i++){//源杯子
for(int j=0;j<4;j++){//目标杯子
if(i==j) continue;
if(data[i]==0) continue;
if(data[j]==cap[j]) continue;
int sum = data[i] + data[j];
int vi = 0;
int vj = 0;
if(sum<=cap[j]){
vi = 0;
vj = sum;
}
else{
vi = sum - cap[j];
vj = cap[j];
}
String news = "";//生成新的字符串
for(int k=0;k<4;k++){
if(k==i) news = news + vi + " ";
else if(k==j) news = news + vj + " ";
else news = news + data[k] + " ";
}
set.add(news.trim());
}
}
return set;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Set<String> from = new HashSet();//出发态
from.add("9 0 0 0");
Set history = new HashSet();//所有历史态
history.addAll(from);
System.out.println(f(history,from,sc.nextLine().trim()));
}
}
例4【风险系数】
X星系的的防卫体系包含 n 个空间站。这 n 个空间站间有 m 条通信链路,构成通信网。
两个空间站间可能直接通信,也可能通过其它空间站中转。
对于两个站点x和y (x != y), 如果能找到一个站点z,使得:
当z被破坏后,x和y不连通,则称z为关于x,y的关键站点。
显然,对于给定的两个站点,关于它们的关键点的个数越多,通信风险越大。
你的任务是:已经网络结构,求两站点之间的通信风险度,即:它们之间的关键点的个数。
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,链路数。
空间站的编号从1到n。通信链路用其两端的站点编号表示。
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条链路。
最后1行,两个数u,v,代表被询问通信风险度的两个站点。
输出:一个整数,如果询问的两点不连通则输出-1.
例如:
用户输入:
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
则程序应该输出:
2
方法1:从a当树根做dfs生成树,直到b点,那么b的所有祖先都是关键点
方法2:在dfs生成树的过程中,求出返祖最高的点,显然这个点的子树就不是关键点
public class Main {
//re->dfs生成树:顶点->(访问过,深度,父结点,最高返祖)
static void dfs(List<Integer> []gr,int [][]re,int v1,int v2){//深度遍历建生成树
if(v1==v2) return;
for(Integer i:gr[v1]){
if(re[i][0]!=0){//碰到已访问的点
fan_zu(re,v1,re[i][1]);//更新整个家族的返祖级
continue;
}
re[i][0] = 1;
re[i][1] =re[v1][1] + 1;
re[i][2] =v1;
re[i][3] =re[v1][1];
dfs(gr,re,i,v2);
}
}
static void fan_zu(int[][]re,int me,int depth){
if(re[me][3]<=depth) return;
re[me][3] = depth;
fan_zu(re,re[me][2],depth);//通知父亲更新返祖值
}
static int solve(int [][]re,int root,int leaf) {
int sum = 0;
int p = leaf;
int min = re[p][3];//当前最高返祖级
while (true) {
int parent = re[p][2];
if (parent == 0 || parent == root)
break;
if (re[parent][1] <= min){
sum++;//关键!!!
//System.out.print(parent + " ");
}
if (re[parent][3] < min)
min = re[parent][3];
p = parent;
}
System.out.println();
return sum;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String []ss = sc.nextLine().trim().split(" ");
int m = Integer.parseInt(ss[0]);//站点数
int n = Integer.parseInt(ss[1]);//链路数
List<Integer> [] gr = new List[m+1];//存放顶点
for(int i=0;i<gr.length;i++)
gr[i] = new Vector();
int [][] re = new int[m+1][4];//dfs生成树:顶点->(访问过,深度,父结点,最高返祖)
for(int i=0;i<n;i++){
ss = sc.nextLine().trim().split(" ");
int v1 = Integer.parseInt(ss[0]);
int v2 = Integer.parseInt(ss[1]);
gr[v1].add(v2);
gr[v2].add(v1);
}
ss = sc.nextLine().trim().split(" ");
int a = Integer.parseInt(ss[0]);
int b = Integer.parseInt(ss[1]);
re[a][0] = 1;
re[a][1] = 0;
re[a][2] = 0;
re[a][3] = 0;
dfs(gr,re,a,b);
System.out.println(solve(re,a,b));
}
}