63.数据流中的中位数

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。


思路:

构造一个最大堆和一个最小堆,最大堆用来存放较小的那一半的数据,最小堆用来存放较大的那一半的数据,每次插入数据时与最大堆的堆顶进行比较,若比其小或相等,则插入最大堆,反之插入最小堆;插入数据后需要平衡两个堆的大小,保证最大堆的大小永远与最小堆相等或多一,最后若两个堆的大小相等,则返回两个堆顶的平均值,若最大堆比最小堆多一,则返回最大堆的堆顶即可;注意C++中最小堆和最大堆的定义格式。


代码:

class Solution {
public:
    void Insert(int num) {
        if(maxp.empty() || num <= maxp.top()) {
            maxp.push(num);
        } else {
            minp.push(num);
        }
        if(maxp.size() == minp.size() + 2) {
            minp.push(maxp.top());
            maxp.pop();
        }
        if(maxp.size() + 1 == minp.size()) {
            maxp.push(minp.top());
            minp.pop();
        }
    }

    double GetMedian() {
        if(maxp.size() == minp.size()) {
            return (maxp.top() + minp.top()) / 2.0;
        } else {
            return maxp.top();
        }
    }
private:
    priority_queue<int, vector<int>, less<int>> maxp;  //从大到小,最大堆
    priority_queue<int, vector<int>, greater<int>> minp;  //从小到大,最小堆
};

要找出数据流中位数,可以使用两个优先队列(堆)来实现。一个小顶堆存储较大的一半数据,一个大顶堆存储较小的一半数据。 具体步骤如下: 1. 初始化两个堆,一个小顶堆 `minHeap` 和一个大顶堆 `maxHeap`。 2. 遍历数据流的每个元素: - 如果 `minHeap` 和 `maxHeap` 的大小相等,将元素插入到 `maxHeap` 。 - 如果 `minHeap` 的大小大于 `maxHeap`,将元素插入到 `minHeap` 。 - 如果插入元素后,`minHeap` 的堆顶元素大于 `maxHeap` 的堆顶元素,则交换两个堆顶元素。 3. 如果两个堆的大小之和是偶数中位数就是两个堆顶元素的平均值;如果是奇数,中位数就是 `minHeap` 的堆顶元素。 下面是使用 C++ 实现的代码示例: ```cpp #include <iostream> #include <queue> #include <vector> class MedianFinder { public: void addNum(int num) { if (minHeap.empty() || num > minHeap.top()) { minHeap.push(num); } else { maxHeap.push(num); } if (minHeap.size() > maxHeap.size() + 1) { maxHeap.push(minHeap.top()); minHeap.pop(); } else if (maxHeap.size() > minHeap.size()) { minHeap.push(maxHeap.top()); maxHeap.pop(); } } double findMedian() { if (minHeap.size() == maxHeap.size()) { return (minHeap.top() + maxHeap.top()) / 2.0; } else { return minHeap.top(); } } private: std::priority_queue<int, std::vector<int>, std::greater<int>> minHeap; std::priority_queue<int, std::vector<int>, std::less<int>> maxHeap; }; int main() { MedianFinder finder; finder.addNum(1); finder.addNum(2); std::cout << finder.findMedian() << std::endl; // 输出 1.5 finder.addNum(3); std::cout << finder.findMedian() << std::endl; // 输出 2 return 0; } ``` 这段代码创建了一个 `MedianFinder` 类,通过 `addNum` 方法添加数据,然后通过 `findMedian` 方法获取中位数。在示例数据流为 1、2、3,所以中位数依次为 1.5 和 2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值