blogs

http://www.cnblogs.com/wangxiaocvpr/p/5894054.html


迁移学习:

http://www.cnblogs.com/wangxiaocvpr/p/6002214.html#3730901


一些相关的博客


对抗生成网络:

http://www.cnblogs.com/wangxiaocvpr/category/864103.html

(转)干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码)
摘要: 干货|这篇TensorFlow实例教程文章告诉你GANs为何引爆机器学习?(附源码) 该博客来源自:https://mp.weixin.qq.com/s?__biz=MzA4NzE1NzYyMw==&mid=2247492203&idx=5&sn=3020c3a43bd4dd678782d8aa24 阅读全文

posted @ 2017-07-10 09:03 AHU-WangXiao 阅读(6) | 评论 (0) 编辑

(转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!
摘要: Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural Networks have made great progress. They now recogn 阅读全文

posted @ 2017-06-19 17:16 AHU-WangXiao 阅读(20) | 评论 (0) 编辑

SalGAN: Visual saliency prediction with generative adversarial networks
该文被密码保护。

posted @ 2017-03-17 20:41 AHU-WangXiao 阅读(7) | 评论 (0) 编辑

Face Aging with Conditional Generative Adversarial Network 论文笔记
摘要: Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产生式对抗玩网络(CGANs)来完成,人类老年照片的估计。 主要是做了一下两个事情: 1. 根据年龄阶段 阅读全文

posted @ 2017-02-28 01:16 AHU-WangXiao 阅读(144) | 评论 (0) 编辑

(转) GAN论文整理
摘要: 本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263评论 0喜欢 7 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读全文

posted @ 2017-01-10 19:20 AHU-WangXiao 阅读(275) | 评论 (0) 编辑

(转) 简述生成式对抗网络
摘要: 简述生成式对抗网络 【转载请注明出处】chenrudan.github.io 本文主要阐述了对生成式对抗网络的理解,首先谈到了什么是对抗样本,以及它与对抗网络的关系,然后解释了对抗网络的每个组成部分,再结合算法流程和代码实现来解释具体是如何实现并执行这个算法的,最后给出一个基于对抗网络改写的去噪网络 阅读全文

posted @ 2016-11-16 12:19 AHU-WangXiao 阅读(11140) | 评论 (2) 编辑

论文笔记之:Generative Adversarial Text to Image Synthesis
摘要: Generative Adversarial Text to Image Synthesis ICML 2016 摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的进行无监督学习。 Attribute Representation: 是一个非常具有意思的方向。由图像 阅读全文

posted @ 2016-10-31 13:17 AHU-WangXiao 阅读(701) | 评论 (0) 编辑

论文笔记之:Conditional Generative Adversarial Nets
摘要: Conditional Generative Adversarial Nets arXiv 2014 本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加“激烈”的对抗,从而达到更好的结果。 众所周知,GANs 是一个 minmax 的过程: 而本文通过引入 条件 y,从而 阅读全文

posted @ 2016-10-31 00:39 AHU-WangXiao 阅读(406) | 评论 (1) 编辑

论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
摘要: Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015 摘要:本文提出一种 generative parametric model 能够产生高质量自然图像。我们的方法利用 Lap 阅读全文

posted @ 2016-10-16 15:44 AHU-WangXiao 阅读(365) | 评论 (0) 编辑

(转)【重磅】无监督学习生成式对抗网络突破,OpenAI 5大项目落地
摘要: 【重磅】无监督学习生成式对抗网络突破,OpenAI 5大项目落地 【新智元导读】“生成对抗网络是切片面包发明以来最令人激动的事情!”LeCun前不久在Quroa答问时毫不加掩饰对生成对抗网络的喜爱,他认为这是深度学习近期最值得期待、也最有可能取得突破的领域。生成对抗学习是无监督学习的一种,该理论由  阅读全文

posted @ 2016-10-16 14:18 AHU-WangXiao 阅读(322) | 评论 (2) 编辑

论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
摘要: UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2016 摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比, 阅读全文

posted @ 2016-10-15 21:58 AHU-WangXiao 阅读(18) | 评论 (0) 编辑

论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
摘要: Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签。我们在一个数据集上训练一个产生式模型 G 以及 一个判别器 D,输入是N类当中的一个。在训练 阅读全文

posted @ 2016-08-25 01:01 AHU-WangXiao 阅读(475) | 评论 (0) 编辑

产生式对抗模型
该文被密码保护。

posted @ 2016-08-08 14:01 AHU-WangXiao 阅读(21) | 评论 (0) 编辑

论文笔记之:Generative Adversarial Nets
摘要: Generative Adversarial Nets NIPS 2014 摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分布;还有一个判别式模型 D 可以预测来自训练样本 而不是 G 的样本的概率.训练 G 的目的是让 D  阅读全文

posted @ 2016-08-06 21:49 AHU-WangXiao 阅读(1707) | 评论 (6) 编辑


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值