最近和一个老同学讨论统计中的p-value检验问题,其中涉及到为什么需要用p-value来做假设检验的判断依据,上网查到了一个很好的例子:
教室里四位同学将装了若干数量的白球和黑球的箱子放在了课桌上,然后他们叫来了他们的小伙伴小花同学。
他们对小花说:“小花,我们来玩个猜猜猜的游戏吧,你在这个箱子里摸5次球,每次摸完都要放回去再摸下一次,然后你猜里面的白球和黑球是不是一样多。”,小花就愉快地同意了。
小花按照要求摸了三次球,每一次都是白球,这时她的心里已经有点怀疑白球和黑球是不是各一半了,她又继续摸,又摸了两次,还都是白球,这时她就大声地说:“箱子里面的白球和黑球肯定不是一样多的”。
小伙伴们打开箱子,发现果然大部分的球都是白球。
小花的判断为什么会对呢?来做个简单的概率计算,如果白球和黑球数量一样多的话,那么每次都摸到白球的概率是1/2。
她连摸三次都是白球的概率是:1/2*1/2*1/2=1/8=12.5%,这种事件发生的概率已经很低。
她连摸五次都是白球的概率是:1/2*1/2*1/2*1/2*1/2=1/32=3.125%,这种事件发生的概率已经极低。
这就是假设检验的原理:在一定的统计假设的前提下,如果发生了小概率事件,我们就有理由怀疑假设的真实性,从而拒绝接受该假设。
小概率事件不会发生,是假设检验的前提。
在这个摸球故事中,假设是白球与黑球数量相同,但是小花摸了5次都是白球,概率是3.125%属于小概率事件,因此我们拒绝假设,也就是拒绝认为白球与黑球数量相同。
最后一个问题,概率低到多少会被认为是小概率事件呢?
英国的统计学家Ronald Fisher把1/20作为小概率标准,也就是0.05,从此0.05或者比0.05小就叫做小概率事件。
这个0.05就是P Value.