统计中的p-value检验

最近和一个老同学讨论统计中的p-value检验问题,其中涉及到为什么需要用p-value来做假设检验的判断依据,上网查到了一个很好的例子:


教室里四位同学将装了若干数量的白球和黑球的箱子放在了课桌上,然后他们叫来了他们的小伙伴小花同学。

他们对小花说:“小花,我们来玩个猜猜猜的游戏吧,你在这个箱子里摸5次球,每次摸完都要放回去再摸下一次,然后你猜里面的白球和黑球是不是一样多。”,小花就愉快地同意了。

小花按照要求摸了三次球,每一次都是白球,这时她的心里已经有点怀疑白球和黑球是不是各一半了,她又继续摸,又摸了两次,还都是白球,这时她就大声地说:“箱子里面的白球和黑球肯定不是一样多的”。

小伙伴们打开箱子,发现果然大部分的球都是白球。

小花的判断为什么会对呢?来做个简单的概率计算,如果白球和黑球数量一样多的话,那么每次都摸到白球的概率是1/2。

她连摸三次都是白球的概率是:1/2*1/2*1/2=1/8=12.5%,这种事件发生的概率已经很低。
她连摸五次都是白球的概率是:1/2*1/2*1/2*1/2*1/2=1/32=3.125%,这种事件发生的概率已经极低。

这就是假设检验的原理:在一定的统计假设的前提下,如果发生了小概率事件,我们就有理由怀疑假设的真实性,从而拒绝接受该假设。

小概率事件不会发生,是假设检验的前提。

在这个摸球故事中,假设是白球与黑球数量相同,但是小花摸了5次都是白球,概率是3.125%属于小概率事件,因此我们拒绝假设,也就是拒绝认为白球与黑球数量相同。

最后一个问题,概率低到多少会被认为是小概率事件呢?
英国的统计学家Ronald Fisher把1/20作为小概率标准,也就是0.05,从此0.05或者比0.05小就叫做小概率事件。
这个0.05就是P Value.

这个例子说明,在做判断的时候,是很难做出很好的决策的,因为有些时候,样本数据中提供的信息量很少,因此需要通过假设的方式,提供额外的信息,然后在提供这些额外信息的基础上,做进一步的分析,看得出的结论是否与这个假设矛盾,如果矛盾则反推出这个假设是错误的,否则接受这个假设。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值