统计中的p-value检验

最近和一个老同学讨论统计中的p-value检验问题,其中涉及到为什么需要用p-value来做假设检验的判断依据,上网查到了一个很好的例子:


教室里四位同学将装了若干数量的白球和黑球的箱子放在了课桌上,然后他们叫来了他们的小伙伴小花同学。

他们对小花说:“小花,我们来玩个猜猜猜的游戏吧,你在这个箱子里摸5次球,每次摸完都要放回去再摸下一次,然后你猜里面的白球和黑球是不是一样多。”,小花就愉快地同意了。

小花按照要求摸了三次球,每一次都是白球,这时她的心里已经有点怀疑白球和黑球是不是各一半了,她又继续摸,又摸了两次,还都是白球,这时她就大声地说:“箱子里面的白球和黑球肯定不是一样多的”。

小伙伴们打开箱子,发现果然大部分的球都是白球。

小花的判断为什么会对呢?来做个简单的概率计算,如果白球和黑球数量一样多的话,那么每次都摸到白球的概率是1/2。

她连摸三次都是白球的概率是:1/2*1/2*1/2=1/8=12.5%,这种事件发生的概率已经很低。
她连摸五次都是白球的概率是:1/2*1/2*1/2*1/2*1/2=1/32=3.125%,这种事件发生的概率已经极低。

这就是假设检验的原理:在一定的统计假设的前提下,如果发生了小概率事件,我们就有理由怀疑假设的真实性,从而拒绝接受该假设。

小概率事件不会发生,是假设检验的前提。

在这个摸球故事中,假设是白球与黑球数量相同,但是小花摸了5次都是白球,概率是3.125%属于小概率事件,因此我们拒绝假设,也就是拒绝认为白球与黑球数量相同。

最后一个问题,概率低到多少会被认为是小概率事件呢?
英国的统计学家Ronald Fisher把1/20作为小概率标准,也就是0.05,从此0.05或者比0.05小就叫做小概率事件。
这个0.05就是P Value.

这个例子说明,在做判断的时候,是很难做出很好的决策的,因为有些时候,样本数据中提供的信息量很少,因此需要通过假设的方式,提供额外的信息,然后在提供这些额外信息的基础上,做进一步的分析,看得出的结论是否与这个假设矛盾,如果矛盾则反推出这个假设是错误的,否则接受这个假设。

### 如何在MATLAB中计算p-value 为了在MATLAB中计算特定分布下的p,可以利用内置的概率密度函数(PDF)、累积分布函数(CDF)以及逆累积分布函数(ICDF)。对于不同的统计测试和对应的理论分布,MATLAB提供了专门的功能来获取这些概率。 #### 使用`ttest` 函数进行单样本 t 测试并获得 p 当涉及到学生氏t分布时,如果想要执行单样本T检验以比较一组观测数据均与指定总体均之间的差异,则可以直接调用 `ttest()` 函数[^1]: ```matlab [h,p,ci,stats] = ttest(data,mu); ``` 这里 `data` 是输入的数据向量而 `mu` 表示假定的总体平均数;返回的结果中包含了假设检验决策变量 `h`、显著性水平即p `p`、置信区间上下限组成的数组 `ci` 和一些额外的信息存储于结构体 `stats` 中。 #### 利用通用方法通过 CDF 获取任意已知分布下给定点处的 p 除了上述针对具体场景设计好的工具外,在知道确切的分布形式及其参数的情况下,还可以借助 MATLAB 提供的各种连续型随机变量模型来进行更灵活的操作。比如要基于标准正态分布N(0,1),可以通过查找其累计分布函数 (Cumulative Distribution Function,CDF) 来确定某个观察到的具体数所对应的位置从而推导出双侧或单侧检验所需的p: ```matlab % 对应于双边检验 z_score = ... ; % 输入Z分数 p_two_tailed = 2 * normcdf(-abs(z_score)); % 或者是一边检验的例子 directional_z_score = ...; % 正负号表示方向 p_one_tail = 1 - normcdf(directional_z_score); ``` 同样的逻辑适用于其他类型的分布,只需替换相应名称前缀即可访问不同种类的分布对象,如 `tcdf()` 代表t分布,`fcdf()` 关联F分布等等。 #### 处理离散事件的情形——二项式试验中的p估计 对于某些情况下产生的离散型结果序列,例如一系列伯努利过程所产生的成功次数记录,可采用binopdf()配合sum()累加的方式近似求解关联的p范围: ```matlab nTrials = ... ; % 总实验次数 successProb = ... ;% 单次成功的概率 observedSuccesses = ...;% 实际发生的成功数目 p_binomial = sum(binocdf((observedSuccesses:nTrials), nTrials, successProb)); ``` 以上展示了多种途径可以在MATLAB环境中完成p的量化工作,无论是处理常见的还是较为特殊的案例都能找到合适的解决方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值