笔试-二分算法突破
二分算法,原始算法
二分查找是一种在有序数组中查找特定元素的高效算法。为了使二分查找工作有效,必须满足以下前提条件:
- 数组必须是有序的
- 数组元素可通过索引随机访问
- 数组元素唯一
二分查找才可能达到理论上的最优性能,即 O(log n) 的时间复杂度,其中 n 是数组中元素的数量。如果数组未排序,可能需要先对数组进行排序,这本身就是一个 O(n log n) 的操作,这样就会影响到整体的效率。
写二分算法的关键点:区间选择,就是要在二分查找的过程中,保持不变量,再循环处理中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。
写二分法,区间的定义一般为两种,左闭右闭[left, right],或者左闭右开[left, right)。
- 左闭右闭[left, right]
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
- 左闭右开[left, right)
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
二分变种,重复元素,找最左边
- 左闭右闭[left, right]
int search(vector<int> &nums, int target) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] >= target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return left;
/*
最终返回 left。这里的关键是理解返回值的含义。
在循环结束时,left 指向的是第一个大于或等于 target 的元素的索引,这是因为每次当 nums[mid] >= target 时,我们都将 right 设置为 mid - 1。
因此,当 nums[mid] < target 时,left 会不断右移,直到它超过 right 或指向第一个不小于 target 的位置。
*/
}
- 左闭右开[left, right)
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size();
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return left; // 需要理解left的意义
}
二分变种,重复元素,找最右边
- 左闭右闭[left, right]
int search(vector<int> &nums, int target) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return right - 1;
}
- 左闭右开[left, right)
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size();
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) {
right = mid;
} else {
left = mid + 1;
}
}
return right - 1; // 需要理解left的意义
}
二分变种,组合贪心
- 左闭右闭[left, right]
int search(vector<int> &nums, int target) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (check(mid)) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return right - 1;
}
bool check(int x) {
// 这个函数的具体实现取决于问题
return BOOLEAN;
}
- 左闭右开[left, right)
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size();
while (left < right) {
int mid = left + (right - left) / 2;
if (check(mid)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
bool check(int x) {
// 这个函数的具体实现取决于问题
return BOOLEAN;
}
总结
- 二分基础选区间
- 二分边界看左右,看谁不等谁,等右得减一
- 二分贪心须检查