PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

主讲人 戴玮

(新浪微博: @戴玮_CASIA

Wilbur_中博(1954123) 20:02:04 

我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望、或者计算边缘概率分布、条件概率分布等等。 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望。这些任务往往需要积分或求和操作。 但在很多情况下,计算这些东西往往不那么容易。因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分布、容易得到解析解的分布形式;其次,我们要积分的变量空间可能有很高的维度,这样就把我们做数值积分的路都给堵死了。因为这两个原因,我们进行精确计算往往是不可行的。
为了解决这一问题,我们需要引入一些近似计算方法。

近似计算有随机和确定两条路子。随机方法也就是MCMC之类的采样法,我们会在讲第十一章的时候专门讲到,而确定近似法就是我们这一章讲的变分。变分法的优点主要是:有解析解、计算开销较小、易于在大规模问题中应用。但它的缺点是推导出想要的形式比较困难。也就是说,人琢磨的部分比较复杂,而机器算的部分比较简单。这和第十一章的采样法的优缺点恰好有互补性。所以我们可以在不同的场合应用变分法或采样法。这里我的一个问题是:是否可以结合二者的优点,使得人也不用考虑太多、机器算起来也比较简单?
变分法相当于把微积分从变量推广到函数上。我们都知道,微积分是用来分析变量变化、也就是函数性质的,这里函数定义为f: x -> f(x),而导数则是df/dx;与之相对,变分用到了泛函的概念:F: f -> F(f),也就是把函数映射为某个值,而相应地,也有导数dF/df,衡量函数是如何变化的。比如我们熟悉的信息论中的熵,就是把概率分布这个函数映射到熵这个值上。和微积分一样,我们也可以通过导数为0的条件求解无约束极值问题,以及引入拉格朗日乘子来求解有约束极值问题。比如说,我们可以通过概率分布积分为1的约束,求解最大熵的变分问题。PRML的附录D和E有比较详细的解释,我们后面也还会看到,这里就不多说了。
变分法这名字听起来比较可怕,但它的核心思想,就是从某个函数空间中找到满足某些条件或约束的函数。我们在统计推断当中用到的变分法,实际上就是用形式简单的分布,去近似形式复杂、不易计算的分布,这样再做积分运算就会容易很多。 比如,我们可以在所有高斯分布当中,选一个和目标分布最相似的分布,这样后面做进一步计算时就容易获得解析解。此外,我们还可以假设多元分布的各变量之间独立,这样积分的时候就可以把它们变成多个一元积分,从而解决高维问题。这也是最简单的两种近似。

概率推断中的变分近似方法,最根本的思想,就是想用形式简单的分布去近似形式复杂、不易计算的分布。比如,我们可以在指数族函数空间当中,选一个和目标分布最相像的分布,这样计算起来就方便多了。
显然,我们这里需要一个衡量分布之间相似性或差异性的度量,然后我们才能针对这个度量进行最优化,求相似性最大或差异性最小的分布。一般情况下,我们会选用KL散度:

或者,当然离散分布就不是积分而是在离散状态上求和。这个值是非负的,而且只在两分布完全相同的情况下取0,所以可以看成两分布之间的距离。但这种度量是不对称的,也就是,而我们在优化的时候,这两种度量实际上都可以使用。这样一来,我们后面也会看到,会造成一些有趣且奇怪的现象。有了这个度量,我们就可以对某个给定的概率分布,求一个在某些条件下和它最相似或距离最小的分布。这里我们看几个例子,直观地认识一下KL散度的不对称性、以及产生这种不对称性的原因。这是两个方差不同的一元高斯分布,其中方差较小的是q(红色曲线),方差较大的是p(蓝色曲线):

根据KL散度的公式,我们能否估计一下,是KL(q||p)较大,还是KL(p||q)较大?我们可以看到,在曲线的中间部分,q(x) > p(x),因此,如果光考虑这部分,显然KL(q||p)会比较大。但是,考虑两边 q(x) < p(x) 的部分,我们可以看到,q(x) 很快趋近于0,此时 p(x)/q(x) 会变得很大,比中间部分要大得多(打个比方,0.8/0.4 和 0.01/0.001)。尽管还要考虑 log 前面的 q(x),但当 q(x) 不等于0时,分母趋近于0造成的影响还是压倒性的。所以综合考虑,KL(q||p)要小于KL(p||q)。它们的精确值分别为0.32和0.81。另一个例子是,如果两个高斯分布方差相等,则KL散度也会相等:

这一点很容易理解。再来看一个复杂一点的例子。在这个例子中,q是单峰高斯分布,p是双峰高斯分布:

这三种情况中,p的两个峰没有分开,有一定粘连,而q则分别拟合了p的左峰、右峰(见PRML 4.4节的拉普拉斯近似,上次读书会也简单介绍过,可参看上次读书会的总结),以及拟合p的均值和方差(即单峰高斯分布的两个参数)。三种拟合情况对应左、中、右三图。对于这三种情况,KL(q||p)分别为1.17、0.09、0.07,KL(p||q)分别为23.2、0.12、0.07。可以看到,无论是哪一种KL散度,在p的双峰没有完全分开的情况下,用单峰高斯q去近似双峰高斯p得到的最优解,都相当于拟合p的均值和方差。如果p的两个峰分开的话,情况会如何呢?

和前一个例子一样,我们分别拟合p的左峰、右峰,以及均值和方差。显然,这里由于p中间有一段概率密度为0的区域,所以可以想见,KL(q||p)可能会比较大。实际情况也是如此:KL(q||p)分别为0.69、0.69、3.45,KL(p||q)分别为43.9、15.4、0.97。可以看到,如果用KL(p||q)做最优化,结果和双峰粘连时一样,仍然是拟合p的均值和方差,也就是所谓的moment-matching;而用KL(q||p)做最优化,结果则会有所变化:会拟合双峰的其中一峰,也就是所谓的mode-seeking。
我们从前面这几个例子中,可以总结一个规律:用KL(q||p)做最优化,是希望p(x)为0的地方q(x)也要为0,否则q(x)/p(x)就会很大,刚才例子的右图在中间部分(5附近)就违背了这一点;反之,如果用KL(p||q)做最优化,就要尽量避免p(x)不为0而q(x)用0去拟合的情况,或者说p(x)不为0的地方q(x)也不要为0,刚才例子的左、中两图也违反了这一点。
所以,KL(q||p)得到的近似分布q(x)会比较窄,因为它希望q(x)为0的地方可能比较多;而KL(p||q)得到的近似分布q(x)会比较宽,因为它希望q(x)不为0的地方比较多。
最后看一个多元高斯分布的例子,书上的图10.3:

即有了前面的讲解,我们可以猜一下,哪些图是KL(q||p)得到的最优解,哪些图是KL(p||q)得到的最优解。
由于KL(q||p)至少可以拟合到其中的一个峰上,而KL(p||q)拟合的结果,其概率密度最大的地方可能没什么意义,所以很多情况下,KL(q||p)得到的结果更符合我们的需要。到这里有什么问题吗。。理解理解。。KL散度这东西。

============================讨论=================================

飞羽(346723494) 20:24:23 
KL(q||p) 就是相当于用q去拟合p?
Yuli(764794071) 20:25:31 
KL就是KL Divergence(相对熵)吧 用信息论来解释的话 是用来衡量两个正函数是否相似  
飞羽(346723494) 20:25:57 
对, 就是相对熵
Wilbur_中博(1954123) 20:27:06 
嗯,我们现在有一个分布p,很多时候是后验分布,但它形式复杂,所以想用形式比较简单的q去近似p。其实也可以直接用后验分布的统计量,比如mode或mean去代替整个分布,进行进一步计算,比如最大后验什么的。但现在如果用近似分布去做预测的话,性能会好得多。
linbo-phd-bayesian(99878724) 20:27:15 
请问为何KL(q||p)》=0,为何没有《0啊,有知道的吗?
飞羽(346723494) 20:28:06 

Wilbur_中博(1954123) 20:29:21 
那个不太难证,利用ln凹函数性质可以证出来。。不过细节我忘记了,呵呵。查一查吧。。应该很多地方都有的。

逸风(421723497) 20:30:44 
PRML P56
Wilbur_中博(1954123) 20:31:50 
总之就是利用KL作为目标函数,去做最优化。。找到和已知复杂分布最相近的一个近似分布。这一章的基本思路就是这样。具体动机最开始的时候已经提到过了。

逸风(421723497) 20:35:31 
为什么要用KL散度这样一个不具备对称性的"距离",而不采用对称性的测度呢?有什么好处?

  • 12
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值