软考高项——快速过一遍课本——第4章信息系统管理

数字化发展时期,基于智能、网络和大数据的新经济正在形成,特征是从“数字融合”向“数字原生”发展,表现为各领域深度融合构造的数字化新世界,不断产生新的数字原生发展模式,极大改变人们的生活方式和行为模式。这场广泛的社会变革的重要基础是深度融合的信息系统,需对其实施有效管理以承担重任。

4.1 管理方法

信息系统管理是一项需要组织各层级充分参与的业务运行工作。大多数组织都拥有专门用 于信息系统管理的职能部门,这些部门配备了相关技术领域的高技能专业人员。同时,组织的管理者也需要了解并参与相关的决策。

4.1.1 管理基础 

高效管理与利用信息是新时代成功的关键,影响组织决策。技术底座成为业务支柱,要求管理者具备全球化能力。信息系统与业务流程集成,成为变革性因素,需管理者参与技术决策以确保正向支撑。

1 .层次结构

信息系统是由人、技术、流程和数据组成的,旨在采集、处理、存储、管理和检索信息,支持组织的管理、调节和控制。其层次架构将业务策略转化为系统组件,通过恰当的人员、技术、流程和数据组合实现,同时受管理层监督并满足业务需求。

信息系统管理至关重要,因其既推动创新又带来挑战(如网络安全和隐私问题)。它涉及四大领域:规划与组织、设计与实施、运维与服务、优化与持续改进,这些领域不仅关乎系统运行,还与道德、战略及个人生活紧密相连,影响深远。

4.1.2 规划和组织 

信息系统的规划和组织旨在通过一致性管理方法,根据组织发展目标规划信息系统的战略、构成及运营,确保满足业务需求。它涵盖管理流程、组织结构、角色职责、活动规范、项目执行、技能优化及服务、基础设施和应用程序的运行管理等多方面内容。

1 .规划模型

信息系统战略旨在实现组织目标,与业务战略和组织机制保持一致。这种一致性在正常运行时可能不易察觉,但在面对挑战或规划新业务时显得尤为重要,需要正确调整以确保协同实践。

成功组织如何通过融合业务战略、信息系统战略和组织机制战略来保持竞争优势。这些战略之间需要细致规划和动态调整,确保相互补充和平衡。信息系统战略不仅受业务和组织机制战略的影响,也反过来影响它们。在规划信息系统时,必须考虑业务和组织策略,避免有害的意外后果,只有通过专门设计战略三角的所有三个组成部分,才能实现信息系统的成功调整。

2. 组织模型

历史上发生的重大系统失效灾难往往揭示了信息系统战略三角在协同方面的问题。当组织机制战略和信息系统战略在规划时未能充分支持业务战略时,就会出现这种协同问题。实现三种战略的协同和一致性是三角平衡的关键,这可以促进技术不仅支撑当前业务战略,还能预测和塑造未来业务战略。进一步地,业务战略和信息战略的融合可以使管理团队成员互换运作。业务战略阐明了组织的目标和实现路径,是组织传达其目的的方法,它基于经济与社会情况、产品与服务对象需求和组织能力来构建。迈克尔·波特提出的竞争力优势模型是描述业务战略的经典框架。

组织在制定业务战略时,有三种主要策略:

总成本领先战略:目标是成为市场上成本最低的生产者,通过最大限度地降低成本来获得高于平均水平的绩效。所提供的产品或服务在质量上需与业内其他产品或服务相当,以确保客户感知到其高性价比。通常,一个行业中只有一个成本引领者。

差异性战略:组织通过差异化来定义其产品或服务,使其在市场上显得独特。组织会确定对客户最重要的定性维度,并找到增加产品和服务价值的方法。为了策略成功,差异化因素带来的价格必须相对于竞争对手是公平的。

专注化战略:组织将范围限制在更狭窄的细分市场,并为该细分市场的客户量身定制产品。这种策略有两种变体:专注成本,即在细分市场中寻求成本优势;专注差异化,即在细分市场中寻求产品或服务的差异化。即使组织在整个市场中没有竞争优势,也可以通过专注于某些细分市场来获得局部竞争优势。

组织机制战略关注于组织如何构建以实现其目标并实施业务战略。哈罗德·莱维特的钻石模型是理解组织设计的经典框架,它将组织计划的关键组成部分标识为信息与控制、人员、结构和任务,并强调这些组件是相互关联的。新时代的组织机制战略成功执行需要组织、控制和文化的变量的最佳组合。组织变量包括决策权、业务流程、正式报告关系和非正式沟通网络;控制变量包括数据可得性、规划质量、业绩计量和评价制度以及激励机制;文化变量则构成组织的价值观。组织管理人员应具备评估组织设计各方面的框架,包括审查当前组织、评估缺失组件和未来可选方案,并回答关于结构、决策权、以人为本的网络、人员特征、业务流程、控制系统以及组织文化等问题。

信息系统战略是组织提供信息服务的计划,旨在支撑业务战略的实施。业务战略关注竞争、定位和能力,而信息系统则帮助确定组织的能力。一个基本的矩阵框架可以帮助管理者理解信息系统组件与策略间的关系,其中信息系统的四个基础结构组件(硬件、软件、网络和数据)与其他资源相关事项之间的关系构成了信息系统战略的关键点。硬件包括桌面单元和服务器,软件用于开展业务、管理计算机本身以及系统间通信,网络是硬件组件间交换信息的物理手段,数据则包括存储在系统中的位和字节。了解系统中有哪些数据以及它们的存储位置对于当前系统至关重要。

4.1.3 设计和实施

信息系统设计和实施的首要任务是将业务需求转化为信息系统架构。这个架构为将组织业务战略转换为信息系统计划提供了蓝图。信息系统作为支持组织中信息流动和处理的基础,包括硬件、软件、数据和网络组件,这些组件需要根据计划以最适合的方式进行选择和组装。因此,信息系统的设计和实施最能体现组织的总体业务战略。

1.设计方法

在面对大量可选信息技术和快速技术进步的背景下,组织需要将业务战略转化为信息系统架构,并进一步转化为信息系统设计。这个过程包括从业务战略出发,制定具体目标,派生详细业务需求,并与架构设计人员合作将这些需求转换为系统要求、标准和流程的详细视图。接着,将这个架构转换为系统设计,包括实际的硬件、数据、网络和软件细节,并扩展到数据位置、访问过程、防火墙位置、链路规范等。信息系统不仅仅是组件的集合,这些组件必须根据设计蓝图以一致的模式组合在一起。信息系统具有全局级别、组织间级别和应用级等多个级别。转换框架提出了内容、人员和位置三类问题,需要为每个信息系统组件回答这些问题,以确保系统的完整性和有效性。

2.架构模式

传统上,信息系统体系架构主要有三种常见模式:

集中式架构:在这种架构下,所有内容都采用集中建设、支持和管理的模式。主体系统通常部署在数据中心,以消除管理物理分离的基础设施带来的困难。集中式架构有助于统一管理和控制,但也可能存在单点故障的风险。

分布式架构:这种架构将硬件、软件、网络和数据的部署方式分配到多台小型计算机、服务器和设备之间,这些设施严重依赖于网络将它们连接在一起。分布式架构提高了系统的可扩展性和容错性,但也可能增加管理和维护的复杂性。

面向服务的系统架构(SOA):SOA架构中使用的软件通常与软件即服务(SaaS)相关架构相关联。这些应用程序通过互联网交付时也被称为Web服务。SOA架构强调服务的重用和互操作性,有助于实现系统的灵活性和可扩展性,但也可能面临服务管理和集成的挑战。

每种架构模式都有其优点和缺点,选择哪种模式取决于组织的业务需求、技术环境、成本效益等因素。

组织在选择集中式与分布式架构时,需要权衡各种因素。分布式架构提供了更大的灵活性和多中心化的组织治理机制,使其更容易添加服务器和具有特定功能的客户端,从而与组织的治理目标更加协调。然而,集中式架构在某些方面更易于管理,因为所有功能都集中在主机或小型机中,减少了分布式设备和服务器带来的复杂性。集中式架构更适合具有高度集中式治理的组织。

另一方面,面向服务的系统架构(SOA)因其允许从现有的软件服务组件构建大型功能单元而越来越受欢迎。SOA为管理人员提供了模块化和组件化设计,使得快速构建和变更应用程序变得更加容易。

综上所述,每种架构都有其独特的优势和适用场景。组织应根据自身的业务需求、治理结构和技术环境来选择最合适的架构模式。

4.1.4 运维和服务

信息系统的运维和服务需要从信息系统运行的视角进行整合性的统筹规划,以确保有效支持组织目标达成和流程实现。这包括运行管理和控制、IT服务管理、运行与监控、终端侧管理、程序库管理、安全管理、介质控制和数据管理等多个方面。

运行管理和控制:涉及过程开发、标准制定、资源分配和过程管理等活动,确保信息系统运行团队的所有活动都受到管理和控制。

IT服务管理:包括服务台、事件管理、问题管理、变更管理、配置管理、发布管理、服务级别管理、财务管理、容量管理、服务连续性管理和可用性管理等活动,旨在确保IT服务交付的有效性和高效性。

运行与监控:IT团队应对信息系统、应用程序和基础设施进行监控,以确保它们继续按要求运行。这包括运行监控和安全监控两个方面。

终端侧管理:IT团队向组织人员提供服务,以改善他们对IT的访问和使用情况。组织通常使用IT管理工具来促进对用户终端计算机的高效和一致的管理。

程序库管理:组织用来存储和管理应用程序源代码和目标代码的工具。程序库的控制使组织能够对其应用程序的完整性、质量和安全性进行高度控制。

安全管理:确保组织的信息安全计划充分识别和解决风险,并在整个运维和服务过程中正常运行。

介质控制:组织需要采取一系列活动,以确保数字介质得到适当管理,包括对其保护以及销毁不再需要的数据。

数据管理:与数据的获取、处理、存储、使用和处置相关的一组活动。

综上所述,信息系统的运维和服务是一个复杂而综合的过程,需要各个管理活动的协同配合,以确保信息系统的稳定运行和高效服务。

4.1.5 优化和持续改进

优化和持续改进是信息系统管理活动中的关键环节,它通过一系列系统性的方法确保信息系统的性能、可用性和有效使用周期。以下是对您所描述内容的详细分析和总结:

一、定义阶段

待优化信息系统定义

协同范围、优化目标和目的

系统团队成员和出资人

优化时间表和交付成果

使用“延伸目标”概念,超越渐进式改进,重新思考信息系统相关业务、运行或流程。

核心流程定义

利益干系人、投入和产出以及广泛的功能

使用SIPOC(Supplier、Input、Process、Output、Customer)分析作为定义核心流程的首选工具。

团队组建

从关键利益干系人群体中确定人员

对信息系统的问题和收益达成共识

有效的团队通常限制为5~7名参与者,较大的团队更难管理。

二、度量阶段

流程定义

使用流程图工具定义度量阶段的流程

决策点是信息系统优化的潜在改进重点。

指标定义

选择能够切实提高系统质量、业务绩效和服务对象满意度的指标

度量指标为基于数据的决策提供输入。

流程基线

通过基线确定现有系统的能力

当系统处于控制优化状态时,统计其系统能力并与服务对象要求进行比较。

度量系统分析

良好的度量系统应具备准确性、可重复性、线性、可重现性和稳定性。

三、分析阶段

价值流分析

定义信息系统使用者眼中相关产品或服务的价值

价值可以定义为组织愿意投资的系统组件、改变信息系统形式、适合度或功能的活动等。

信息系统异常的源头分析

区分稳定的信息系统和失控的信息系统

对于稳定的信息系统,通过根本性更改减少系统内置的常见变异原因。

确定优化改进的驱动因素

使用数学分析方法确定关键驱动因素,如相关性与回归分析、最小二乘拟合和残差分析等。

四、改进/设计阶段

改进/设计的解决方案推进

向发起人提出一个或多个解决方案,量化每种方法的收益,并就解决方案达成共识并实施。

定义新的操作/设计条件。

定义和缓解故障模式

评估信息系统的故障模式,定义不同故障的缓解策略。

五、控制/验证阶段

标准化新程序/新系统功能的操作控制要素

对改进形成的新方法、新系统运行进行标准化,以维持改进带来的效益。

培训对新系统或优化系统的操作控制能力。

持续验证优化的信息系统的可交付成果

对受影响的人员开展培训,使其了解信息系统如何变化及其产生的原因。

记录经验教训

记录项目文档和经验教训,为组织中的其他团队提供参考。

总结

优化和持续改进是一个系统性的过程,需要明确的计划、有效的执行、准确的检查和及时的处理。通过戴明环(PDCA)或DMAIC/DMADV等方法,可以确保信息系统的性能、可用性和有效使用周期得到持续改进和优化。每个阶段都有其特定的目标和活动,需要团队成员的共同努力和协作。通过标准化新程序/新系统功能的操作控制要素、持续验证优化的信息系统的可交付成果以及记录经验教训,可以确保改进成果得以维持并为未来的优化提供参考

4.2 管理要点

信息系统管理涉及系统准备、设计、实施、运行等活动的众多方面,管理重点范围和细致程度随各组织的战略和业务目标的不同而存在差异。从日常管理活动视角来看,各组织关注的管理内容主要聚焦在数据管理、运维管理和信息安全管理等方面的体系化管理。

4.2.1 数据管理

数据管理是一个综合性的职能,它涵盖了数据的全生命周期,从数据的获取到其价值提升。这一职能通过制定和执行相关的计划、策略、方案、项目、流程、方法和程序,确保数据和信息资产的有效管理和利用。数据管理框架是一个功能模型,用于对组织内部产生的数据进行统一的跟踪、协调和管理。

数据管理的基本框架包括多个方面,旨在确保数据的完整性、准确性、安全性和可用性。主要活动可能包括数据的收集、存储、处理、分析和共享等,这些活动都需要在严格的管理和控制下进行。

数据管理能力成熟度评估模型(DCMM)是一个重要的国家标准,它提出了8个核心能力域,包括数据战略、数据治理、数据架构、数据应用、数据安全、数据质量、数据标准和数据生存周期。这些能力域为组织提供了一个全面的框架,用于评估和提升其数据管理能力。

通过利用DCMM等先进的数据管理理念和方法,组织可以建立和评价自身的数据管理能力,不断完善数据管理组织、程序和制度,从而充分发挥数据在推动组织向信息化、数字化、智能化发展方面的价值。

此外,数据工程也是数据管理中的一个重要方面,它使用工程化的方法来开展组织数据能力建设与实施,包括数据的规划、设计、开发、实施和维护等各个阶段。通过数据工程,组织可以更加系统地管理和利用数据资源,提升数据的质量和价值。

综上所述,数据管理是一个复杂而重要的职能,它涉及数据的全生命周期管理,需要建立全面的管理框架和评估模型来确保其有效性和可持续性。

1.数据战略

组织的数据战略能力域主要包括三个核心部分:数据战略规划、数据战略实施和数据战略评估。

1.数据战略规划:

目标:在组织利益相关者间达成共识,明确数据管理及应用动因,综合反映数据提供方和消费方需求。

主要活动:

识别利益相关者并明确需求。

评估业务和信息化对数据的需求。

制定数据战略,包括愿景陈述、规划范围、数据管理模型、当前差距、管理层责任等。

发布和修订数据战略。

2.数据战略实施:

目标:实现数据职能框架,缩小与愿景、目标之间的差距。

主要活动:

建立评估标准,规范评估过程。

评估当前数据战略落实情况。

分析存在的差距。

确定数据职能任务优先级。

制定保障计划,包括预算。

实施任务并进行过程监控。

3.数据战略评估:

目标:建立业务案例和投资模型,跟踪进度并记录供审计和评估使用。

主要活动:

建立任务效益评估模型,从时间、成本、效益等方面进行评估。

建立业务案例,包括用例模型、项目计划、风险评估和项目描述。

建立投资模型,确保资本合理分配,满足业务需求和监管要求。

进行阶段评估,从业务价值、经济效益等维度评估已取得的成果。

这三个部分共同构成了组织数据战略能力域的核心框架,旨在确保组织能够有效地规划、实施和评估其数据战略,从而实现数据管理和应用的长期目标。

2.数据治理

组织的数据治理能力域主要包括三个核心能力项:数据治理组织、数据制度建设和数据治理沟通。

1.数据治理组织:

内容:涉及组织架构、岗位设置、团队建设、数据责任等,是数据职能工作的基础。

主要活动:

建立数据治理组织,确保数据战略的实施。

设定数据治理岗位,明确职责和任职要求。

团队建设,包括培训和能力提升。

数据归口管理,明确数据相关人员和责任。

建立绩效评价体系,评估团队人员的工作表现。

2.数据制度建设:

目的:确保数据管理和数据应用的规范化运行。

制度设计:分层次设计(策略、办法、细则),遵循发布流程并定期更新。

主要活动:

制定数据制度框架,规定数据管理和应用的具体领域和目标。

整理数据制度内容,包括数据策略、数据管理办法和数据管理细则。

发布、宣贯和实施数据制度,确保制度在组织内部的有效执行。

3.数据治理沟通:

目的:确保利益相关者了解数据策略、标准、流程等最新情况,提升数据管理能力和数据资产意识。

主要活动:

明确沟通路径,分析利益相关者诉求和沟通重点。

制定沟通计划,达成共识。

执行沟通活动,记录沟通情况。

建立问题协商机制,解决分歧。

明确沟通渠道,如邮件、文件、网站等。

制订并执行培训宣贯计划,提升员工的数据知识和技能。

这三个能力项相互关联,共同构成了组织数据治理的完整框架,旨在确保数据的有效管理、应用和沟通,从而支持组织的战略目标和业务发展。

3.数据架构

组织的数据架构能力域主要包括以下四个关键能力项:

1.数据模型:

核心活动:收集和理解组织的数据需求,制定模型规范,开发数据模型(包括组织级和系统应用级),应用数据模型以指导系统建设,进行符合性检查,以及实施模型变更管理。

工作要点:确保数据模型能够准确反映组织业务运行、管理和决策中的数据需求,通过模型规范来统一数据的管理和命名,及时根据需求变化更新数据模型。

2.数据分布:

核心活动:梳理数据现状,识别数据类型,梳理数据分布关系(包括数据、流程、组织机构、系统的关系),明确权威数据源,应用数据分布关系,以及维护和管理数据分布关系。

工作要点:通过数据分布关系的梳理,优化数据的集成关系,指定数据责任人,定义数据工作的优先级,并定期维护和更新数据分布关系以保持其及时性。

3.数据集成与共享:

核心活动:建立数据集成共享制度,形成数据集成共享标准,建立数据集成共享环境,以及检查新建系统的数据集成方式。

工作要点:通过制度、标准和技术管理,促进组织内部数据的互联互通,确保数据的准确、及时和高效共享。

4.元数据管理:

核心活动:管理元模型,集成和变更元数据,以及应用元数据。

工作要点:基于元模型对元数据进行统一管理和更新,形成对数据描述的统一视图,并通过元数据的应用来满足数据管理和数据应用的需求,如进行血缘分析、影响分析、符合性分析和质量分析等。

总结来说,组织的数据架构能力域涵盖了从数据需求收集到数据模型开发、数据分布关系梳理、数据集成与共享,以及元数据管理的全过程。这些能力项共同构成了组织数据架构的基石,为组织的数据管理、应用和决策提供有力支持

4.数据应用

数据应用能力域主要包括以下三个关键能力项:

1.数据分析:

核心活动:包括常规报表分析、多维分析、动态预警和趋势预报。这些活动旨在通过对组织内外部数据的深入挖掘和分析,为组织的经营管理活动提供数据决策支持。

工作要点:常规报表分析注重数据的统一组织、加工和展示;多维分析旨在找出同类性质统计项之间的数学联系;动态预警通过实时监测数据并预设阈值进行预警;趋势预报则是对事物未来特征和发展状况进行估计和测算。

2.数据开放共享:

核心活动:涉及梳理开放共享数据、制定外部数据资源目录、建立统一的数据开放共享策略、数据提供方管理、数据开放和数据获取。这些活动旨在实现数据的跨组织、跨行业流转,最大化数据价值。

工作要点:组织需要对其开放共享的数据进行全面梳理,并建立清晰的开放共享数据目录;同时,对需要的外部数据进行统一梳理,建立数据目录;制定包括安全、质量等内容在内的统一数据开放共享策略;建立对外数据使用策略和数据提供方服务规范;通过各种方式对外开放数据,并保证数据质量;根据数据需求进行数据提供方的选择。

3.数据服务:

核心活动:包括数据服务需求分析、数据服务开发、数据服务部署、数据服务监控和数据服务授权。这些活动旨在通过对组织内外部数据的统一加工和分析,结合公众、行业和组织的需要,提供跨领域、跨行业的数据服务。

工作要点:数据分析团队需要分析外部数据需求,并提出数据服务目标和展现形式;数据开发团队根据需求分析对数据进行汇总和加工,形成数据产品;部署数据产品,对外提供服务;对数据服务进行全面监控和管理,实时分析数据服务的状态、调用情况、安全情况等;对数据服务的用户进行授权,并对访问过程进行控制。

总结来说,数据应用能力域涵盖了数据分析、数据开放共享和数据服务三个关键能力项。这些能力项共同构成了组织数据应用的基础,通过深入挖掘和分析数据、实现数据的开放共享和提供高质量的数据服务,为组织的决策制定、价值创造和向用户提供价值提供有力支持。

5.数据安全

组织的数据安全能力域主要包括以下三个关键能力项:

1.数据安全策略:

核心活动:规划数据安全策略,制定数据安全标准,定义数据安全管理的目标、原则、管理制度、管理组织和管理流程。

工作要点:结合组织管理需求、监管需求以及相关标准,建立组织的数据安全管理策略;确定数据安全等级及覆盖范围;为组织的数据安全管理提供保障。

2.数据安全管理:

核心活动:数据安全等级的划分,数据访问权限控制,用户身份认证和访问行为监控,数据安全的保护,以及数据安全风险管理。

工作要点:根据组织数据安全标准对内部数据进行等级划分;制定数据安全管理的利益相关者清单并授权其数据访问和控制权限;在数据访问过程中对用户的身份进行认证识别,并对其行为进行记录和监控;提供数据安全保护控制措施;对组织已知或潜在的数据安全进行分析,制定防范措施并监督落实。

3.数据安全审计:

核心活动:过程审计,规范审计,合规审计,供应商审计,以及审计报告发布和数据安全建议。

工作要点:分析实施规程和实际做法,确保数据安全目标、策略、标准、指导方针和预期结果相一致;评估现有标准和规程的适当性,与业务要求和技术要求的一致性;检索和审阅组织相关监管法规要求,验证其合规性;评审合同和数据共享协议,确保供应商履行数据安全义务;向高级管理人员和其他利益相关者报告数据安全状态;提出数据安全设计、操作和合规等方面的改进建议。

总结来说,组织的数据安全能力域涵盖了数据安全策略、数据安全管理和数据安全审计三个关键能力项。这些能力项共同构成了组织数据安全管理的框架,通过制定策略、实施管理和进行审计,确保组织数据的安全性、合规性和持续改进。

6.数据质量

组织的数据质量能力域高度总结如下:

1.数据质量需求:明确数据质量目标,制定衡量数据质量的规则,包括技术指标、业务指标及校验规则,为数据质量管理提供依据。主要活动包括定义管理目标、评价维度、管理范围,并设计持续维护与更新的数据质量规则。

2.数据质量检查:实时监控数据质量,发现并记录问题。制定检查计划,剖析数据质量情况,依据规则进行校验,并管理数据质量问题。

3.数据质量分析:分析数据质量问题,找出原因,定义优先级。整理分析方法,深入分析问题根源,评估问题影响,形成分析报告,并建立数据质量知识库。

4.数据质量提升:根据分析结果制定并实施改进方案,包括错误数据更正、业务流程优化、系统问题修复等。进行数据质量校正、跟踪与提升,并通过培训、宣贯等活动建立良好的数据质量文化,确保数据质量持续改进。

这四个能力项共同构成了组织数据质量管理的完整框架,从需求到检查、分析再到提升,形成了一个闭环的数据质量管理流程。

7.数据标准

组织的数据标准能力域高度总结如下:

1.业务术语:制定统一的管理制度与流程,管理业务术语的创建、维护和发布,确保组织内部对数据理解的一致性。主要活动包括制定业务术语标准、建立术语字典、发布与应用术语,并进行宣贯。

2.参考数据和主数据:对定义的数据值域进行管理,控制数据值域列表内部和跨不同列表之间的业务关系,实现参考数据和主数据的一致、共享使用。主要活动包括定义编码规则、数据模型、数据值域,建立管理流程和质量规则,以及实现数据的集成共享。

3数据元:通过标准化核心数据元,使数据的拥有者和使用者对数据有一致的理解。主要活动包括建立数据元的分类、命名和管理规范,进行数据元的创建、目录建立、查找引用和日常管理,并定期发布管理报告。

4.指标数据:对组织内部经营分析所需的指标数据进行统一规范化定义、采集和应用,提升统计分析的数据质量。主要活动包括制定指标数据分类管理框架,定义标准化格式,梳理指标数据形成字典,定期采集生成数据,进行访问授权和数据展现,监控数据准确性及时性,并划分归口管理部门、职责和流程。

这四个能力项共同构成了组织数据标准管理的核心框架,从业务术语到参考数据、主数据、数据元,再到指标数据,形成了一个全面、系统的数据标准管理体系。

8.数据生存周期

组织的数据生存周期能力域涵盖数据需求、设计开发、运维和退役四大环节:

1.数据需求:

建立管理制度,明确管理组织、制度和流程。

收集并评审数据需求,确保与业务目标一致,并达成共识。

更新数据管理标准,保持与实际需求的一致性。

集中管理数据需求,确保需求的汇总分析和历史回顾。

2.数据设计和开发:

设计满足数据需求的解决方案,包括数据模型、数据库、数据产品等。

准备数据,明确数据提供方和提供方案。

进行质量管理,确保设计满足业务需求和数据管理标准。

实施数据解决方案,包括开发、测试、迁移和验证等。

3.数据运维:

制定运维方案,明确运维组织。

管理数据提供方,确保数据质量和服务水平。

运维数据平台,确保技术工具的选择和正常运行。

管理数据需求的变更,确保设计与实施的一致性。

4.数据退役:

分析数据退役需求,明确保留和清除要求。

设计数据退役标准和流程,确保合规性和业务需求。

执行数据退役操作,包括归档、迁移和清除等。

制定数据恢复检查机制,确保数据的可恢复性。

管理归档数据的查询请求,满足业务或监管需要。

综上所述,组织的数据生存周期能力域是一个从数据需求到数据退役的完整过程,旨在确保数据的准确性、可用性、安全性和合规性,以支持组织的业务运营、经营分析和战略决策。

9.理论框架与成熟度

国内外常用的数据管理模型主要包括以下几种:

1.数据管理能力成熟度模型(DCMM):

划分5个等级:初始级、受管理级、稳健级、量化管理级、优化级。

从无统一管理流程到数据管理流程实时优化,强调数据管理在组织中的重要性和不断优化。

2.数据治理框架(DGI):

国际数据治理协会发布,提供组织进行数据治理的操作层面框架。

包含组织结构、治理规则和治理过程三个维度,共10个关键通用组件。

3.数据管理能力评价模型(DCAM):

企业数据管理协会(EDM)制定,基于实际案例经验总结。

包含基础组件、执行组件、分析组件和应用组件,强调团队协作、标准执行和资金支持。

4.数据管理模型(DAMA-DMBOK):

国际数据管理协会(DAMA)发布,指导组织的数据管理职能和数据战略评估。

由11个数据管理职能领域和7个基本环境要素构成,提供全面的数据管理知识体系。

综上所述,这些数据管理模型为组织提供了不同角度和层次的数据管理框架和指导,帮助组织建立、评估和优化其数据管理能力和实践。

4.2.2 运维管理

IT运维是组织IT服务中的关键环节,它采用IT手段和方法,根据服务对象的服务级别要求,为IT系统运行环境、业务系统等提供综合维护和管理活动。随着组织IT建设的深入,IT运维已成为各行业组织管理者和IT团队普遍关注的问题。

1 .能力模型

国家标准GB/T 28827.1定义了IT运维能力模型,包括治理要求、运行维护服务能力体系和价值实现。该模型旨在通过策划、实施、检查和改进,实现运维能力的持续提升,以满足内外部用户的需求和期望,实现服务价值。

1.治理要求:确保运维服务绩效、风险控制和服务合规性,提出最高管理层领导作用及承诺的能力体系建设要求。

2.运行维护服务能力体系(MCS):

围绕人员、过程、技术、资源四要素,策划、实施、检查和改进运维能力体系。

分为策划、实施、检查和持续改进四个阶段,实现运维能力的螺旋式上升。

需要明确能力管理团队的组成和职责,实施能力策划活动,并抓好能力计划实施的各项管理。

3.价值实现:识别服务需求,通过服务提供满足用户需求,实现服务价值。包括服务需求识别、服务提供和服务价值实现三个环节。

4.人员能力:

人力资源是组织的核心竞争力,运维人员分为管理类、技术类和操作类。

进行人员能力策划、岗位结构、人员储备、培训、绩效管理和能力评价等管理活动。

建立运行维护服务对应岗位的等级评价标准和能力评价机制,持续改进人员能力。

5.资源能力:

资源能力由人员、过程和技术要素中被固化下来的能力转化而成,确保IT运维能“保障做事”。

包括知识库、服务台、备件库和运行维护工具等,满足不同服务场景的需求。

重视自主知识、技术和业务流程的固化工作,发挥经验沉淀的作用。

6.技术能力:

通过自有核心技术的研发和非自有核心技术的学习,提升发现问题和解决问题的能力。实施技术管理、技术研发和技术成果应用等活动,满足不同服务场景下的服务要求。

7.过程:

通过过程的制定,把人员、技术和资源要素以过程为主线串接在一起,指导IT运维人员正确做事。设计过程框架,明确各过程之间的关系和接口,制定管理过程的目标、活动和考核指标。

综上所述,IT运维能力模型是一个综合性的框架,旨在通过不断优化和提升运维能力,满足内外部用户的需求和期望,实现服务价值。

2.智能运维

中国电子工业标准化技术协会发布的团体标准T/CESA 1172定义了智能运维的通用要求,并给出了智能运维能力框架。该框架包括组织治理、智能特征、智能运维场景实现、能力域和能力要素。其中,能力要素是构建智能运维能力的基础,包括人员、技术、过程、数据、算法、资源和知识等方面。

智能运维能力平台通常具备数据管理、分析决策和自动控制等能力,用于采集、处理、存储、展示运维数据,做出实时运维决策,并驱动自动化工具实施操作。

在能力应用方面,以运维场景为中心,通过场景分析、能力构建、服务交付和迭代调优四个关键环节,使运维场景具备智能特征。智能特征包括能感知、会描述、自学习、会诊断、可决策、自执行和自适应等方面,这些特征共同提升了运维的智能化水平,实现了质量可靠、安全可控、效率提升和成本降低的目标。

总之,智能运维能力框架为组织提供了构建和提升智能运维能力的指导,通过优化能力要素、建设能力平台和应用能力应用,实现运维场景的智能化,提升运维效率和质量。

4.2.3 信息安全管理

数字时代,信息的价值超过信息处理设施本身,各类组织对信息及设施的依赖增大,信息安全变得尤为重要。

CIA三要素:信息安全的核心属性包括保密性(Confidentiality)、完整性(Integrity)和可用性(Availability),这三个特性构成了信息安全的基本目标。然而,CIA有其局限性,仅关注信息本身是不够的,还需要考虑其他重要因素。

信息安全管理体系:信息系统安全管理涉及组织机构的整个信息系统生命周期,包括落实安全管理机构及人员、开发安全策略、实施风险管理、制订业务持续性计划和灾难恢复计划、选择与实施安全措施等。安全管理机构应逐步建立自己的信息安全组织体系。

网络安全等级保护:网络安全等级保护制度2.0将信息系统安全扩展到网络安全,根据等级保护对象的重要程度和潜在危害程度,将其安全保护等级分为五级。同时,规定了不同级别的等级保护对象应具备的基本安全保护能力,从第一级到第四级,安全保护能力逐渐增强,能够在不同程度上防护恶意攻击和自然灾难等威胁,并在受损后恢复功能。

总之,数字时代对信息安全提出了更高要求,需要综合考虑CIA三要素、建立信息安全管理体系,并实施网络安全等级保护制度,以确保信息的安全性和可用性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值