Numpy中np.max()用法的详细解释(误区)(axis=1,axis=0)

先贴上np.max()的解释

对于大多数初学者来讲,最容易令人困惑的地方就是axis=0和axis=1的区别。

在实际应用中

这两种方法的结果是一样的,而一些人错误的直接认为axis=0意味着计算两个数组的每列最大值,实际上这是不准确的。确切地讲,axis=0代表的是“沿行操作”,在一些参考书中表达的是“沿着第一个轴操作“这里的第一个轴指的是行。

实际上在numpy中操作的过程大致是这样:

实际上step1和2是同时进行的,这也就是为什么axis = 1 得到的结果是每列的最大值,而axis=0得到的是每行的最大值。

from transformers import BertTokenizer, BertForSequenceClassification, TrainingArguments, Trainer from datasets import load_from_disk import numpy as np from sklearn.metrics import accuracy_score def load_processed_data(): dataset = load_from_disk("../data/processed_imdb") return dataset['train'], dataset['test'] # 定义预处理函数 def preprocess_function(examples): return tokenizer( examples['text'], truncation=True, padding='max_length', max_length=128 ) # 定义评估指标 def compute_metrics(p): preds = np.argmax(p.predictions, axis=1) return {'accuracy': accuracy_score(p.label_ids, preds)} if __name__ == '__main__': train_data, test_data = load_processed_data() # 加载BERT的分词器 tokenizer = BertTokenizer.from_pretrained("C:/Users/Administrator/bert_cache") # 应用预处理 train_data = train_data.map(preprocess_function, batched=True) test_data = test_data.map(preprocess_function, batched=True) # 重命名标签列(适配HuggingFace格式) train_data = train_data.rename_column('label', 'labels') test_data = test_data.rename_column('label', 'labels') # 设置pytorch格式 train_data.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) test_data.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) # 加载预训练模型 model = BertForSequenceClassification.from_pretrained( "C:/Users/Administrator/bert_cache", num_labels=2 ) training_args = TrainingArguments( output_dir='./results', # 输出目录 num_train_epochs=3, # 训练轮次 per_device_train_batch_size=16, # 训练批次大小 gradient_accumulation_steps=2, # 等效批次32 per_device_eval_batch_size=128, # 评估批次大小 warmup_steps=500, # 学习率预热步数 weight_decay=0.01, # 权重衰减 logging_dir='./logs', # 日志目录 logging_steps=100, # 减少日志频率 eval_strategy='epoch', # 每轮评估一次 save_strategy='epoch', gradient_checkpointing=True, # 以时间换空间 optim="adafactor", # 比AdamW节省30%显存 ) # 创建Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_data, eval_dataset=test_data, # 实际应用时应使用验证集 compute_metrics=compute_metrics ) # 开始训练! trainer.train() # 保存模型 model.save_pretrained('./my_bert_model') tokenizer.save_pretrained('./my_bert_model') # 加载模型 # from_pretrained_model = BertForSequenceClassification.from_pretrained('./my_bert_model') 我现在在做什么,这个bert我要训练他的什么部分,bert的哪些部分被冻结了
最新发布
04-04
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值