1.Spark的背景、定义、特点
背景
MapReduce框架局限性
仅支持Map和Reduce两种操作,提供给用户的只有这两种操作
编程复杂度略高,学习和使用成本略高
处理效率较低
Map中间结果写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据
任务调度和启动开销大
在机器学习、图计算等方面支持有限,性能效果表现比较差。
mapreduce的机器学习框架,称为mahout。
定义
专为大规模数据处理而设计的快速通用的计算引擎,并形成一个高速发展应用广泛的生态系统
特点
速度快
内存计算下,Spark比Hadoop块100倍
易用性
80多个高级运算符
跨语言:使用Java,Scala,Python,R和SQL快速编写应用程序。
通用性
Spark 提供了大量的库,包括SQL、DataFrames、MLib、GraphX、Spark Streaming。
开发者可在同一个应用程序中无缝组合这些库
支持多种资源管理器
Spark支持Hadoop YARN,Apache Mesos,及其自带的独立集群管理器
生态组件丰富与成熟
Spark streaming:实时数据处理
shark/sparkSQL:用sql语句操作spark引擎
sparkR:用R语言sql语句操作spark
mlib:机器学习算法库
graphx:图计算组件
2.在Hadoop生态圈中位置
在hadoop生态圈位置
spark生态圈
Spark Core:包含Spark的基本功能;尤其是定义RDD(弹性分布式数据集,resilient distributed dataset)的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
Spark SQL:提供通过Apache Hive 的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表当作一个RDD,Spark SQL 查询被转换为Spark操作。
Spark Streaminig:对实时数据流进行处理和控制。Spark Streaming 允许程序能够像普通RDD一样处理实时数据
MLib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等待需要对大量数据进行迭代的操作。
GraphX:控制图、并行图操作个计算的一组算和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作
SparkR是一个提供从R中使用Spark的轻量级前端的R包。在Spark1.6以后,SparkR提供了分布式数据框架,它支持selection,filtering,aggregation等操作。也支持使用MLib分布式机器学习
3.版本发展与就业前景
版本发展
重要里程碑
稳定版本一览(2016年至今)
Spark 3.1.2 (06.11 2021)
Spark 2.4.8 (05.17 2021)
Spark 3.1.1 (03.02 2021)
Spark 2.4.7 (12.12 2020)
Spark 3.0.0 (06.16 2020)
Spark 2.4.6 (06.05 2020)
Spark 2.4.4 (08.31 2019)
Spark 2.4.0 (11.02 2018)
Spark 2.3.2 (09.25 2018)
Spark 2.3.1 (Jun 08 2018)
Spark 2.3.0 (Feb 28 2018)
Spark 2.2.2 (Jul 02 2018)
较经典的版本为1.X中的1.6.2版本和2.X中的2.3.2,成熟稳定,市占率高。
Spark1.x与2.x的优缺点对比
优点
API抽象更高级、更统一,包括在spark-core,sparksql,sparksession等方面,学习更简单,开发效率更高,执行效率综合提升更明显。
统一DataFrames和DataSets,API进行了全部统一,简化学习和编程复杂度。
基本定位是底层API变成沿用RDD,高级API编程均为DataSets,而大多数情况下用DataSets均可以解决问题。
spark-streaming基于sparksql进行了API更高级抽象,即structured streaming(结构化流程),易用性和性能提高。
对诸多组件中的旧的rdd计算了哟及用dataFrame或DataSet进行了重写优化,并扩充了更多的算法。
缺点
与以前版本不是很兼容,只是绝大部分兼容
相对于1.6.x来讲,稳定性略差,bug不断
结论
就业前景
成熟度相比于hadoop还差一些,但自身迭代和生态圈发展很快。
业务对是要求日益增高,各大公司和小公司都在积极调研转向spark,都需要spark、用spark的人
spark特别适用于迭代运算比较多的机器学习算法,而机器学习正在如火如荼发展中。
spark未来可能会取代MapReduce,但与Hasoop仍会发生友好共生
基于内存计算是最大的优势,而内存瓶颈会越来越少,古spark的爆发点还有很大空间
总结:岗位需求量和发展前景都很广阔,是未来3—5年的技术应用最大热门