部署
注意固定的ip地址和主机需要在同一个子网,选择桥接模式
桥接模式具有和宿主机同等地位,可以直接和同一网络内其他主机通信,nat模式依赖宿主机上网,只能和宿主机通信.
关于向yarn提交spark作业报错
通过以下方法查看yarn的报错日志.如果是找不到类,可能是输入命令格式有问题.
hadoop等启动
1.进入Hadoop的bin目录下,输入:start-all.sh 即可启动你所搭建的集群.如果配置过路径,直接start-all.sh可以启动hdfs和yarn
2.进入zookeeper的bin目录下,输入:zkServer.sh start 即可启动zookeeper,或者直接zkServer.sh start
3.进入kafka的目录下输入命令:nohup bin/kafka-server-start.sh config/server.properties &
JAVA
外部类和内部类
JavaBean
工厂模式
性能调优
资源和并行度分配
重构RDD和持久化
第一,RDD架构重构与优化
尽量去复用RDD,差不多的RDD,可以抽取称为一个共同的RDD,供后面的RDD计算时,反复使用。
第二,公共RDD一定要实现持久化
对于要多次计算和使用的公共RDD,一定要进行持久化。
持久化,也就是说,将RDD的数据缓存到内存中/磁盘中,(BlockManager),以后无论对这个RDD做多少次计算,那么都是直接取这个RDD的持久化的数据,比如从内存中或者磁盘中,直接提取一份数据。
第三,持久化,是可以进行序列化的
如果正常将数据持久化在内存中,那么可能会导致内存的占用过大,这样的话,也许,会导致OOM内存溢出。
当纯内存无法支撑公共RDD数据完全存放的时候,就优先考虑,使用序列化的方式在纯内存中存储。将RDD的每个partition的数据,序列化成一个大的字节数组,就一个对象;序列化后,大大减少内存的空间占用。
序列化的方式,唯一的缺点就是,在获取数据的时候,需要反序列化。
如果序列化纯内存方式,还是导致OOM,内存溢出;就只能考虑磁盘的方式,内存+磁盘的普通方式(无序列化)。
内存+磁盘,序列化
第四,为了数据的高可靠性,而且内存充足,可以使用双副本机制,进行持久化
持久化的双副本机制,持久化后的一个副本,因为机器宕机了,副本丢了,就还是得重新计算一次;持久化的每个数据单元,存储一份副本,放在其他节点上面;从而进行容错;一个副本丢了,不用重新计算,还可以使用另外一份副本。
这种方式,仅仅针对你的内存资源极度充足
广播大变量
这种默认的,task执行的算子中,使用了外部的变量,每个task都会获取一份变量的副本,有什么缺点呢?在什么情况下,会出现性能上的恶劣的影响呢?
map,本身是不小,存放数据的一个单位是Entry,还有可能会用链表的格式的来存放Entry链条。所以map是比较消耗内存的数据格式。
比如,map是1M。总共,你前面调优都调的特好,资源给的到位,配合着资源,并行度调节的绝对到位,1000个task。大量task的确都在并行运行。
举例,默认情况下,1000个task,1000份副本。10G的数据,网络传输,在集群中,耗费10G的内存资源。
如果使用了广播变量。50个execurtor,50个副本。500M的数据,网络传输,而且不一定都是从Driver传输到每个节点,还可能是就近从最近的节点的executor的bockmanager上拉取变量副本,网络传输速度大大增加;500M的内存消耗。
10000M,500M,20倍。20倍~以上的网络传输性能消耗的降低;20倍的内存消耗的减少。
对性能的提升和影响,还是很客观的。
kryo序列化
默认情况下,Spark内部是使用Java的序列化机制,ObjectOutputStream / ObjectInputStream,对象输入输出流机制,来进行序列化
这种默认序列化机制的好处在于,处理起来比较方便;也不需要我们手动去做什么事情,只是,你在算子里面使用的变量,必须是实现Serializable接口的,可序列化即可。
但是缺点在于,默认的序列化机制的效率不高,序列化的速度比较慢;序列化以后的数据,占用的内存空间相对还是比较大。
可以手动进行序列化格式的优化
Spark支持使用Kryo序列化机制。Kryo序列化机制,比默认的Java序列化机制,速度要快,序列化后的数据要更小,大概是Java序列化机制的1/10。
所以Kryo序列化优化以后,可以让网络传输的数据变少;在集群中耗费的内存资源大大减少。
fastutil
Spark中应用fastutil的场景:
1、如果算子函数使用了外部变量;那么第一,你可以使用Broadcast广播变量优化;第二,可以使用Kryo序列化类库,提升序列化性能和效率;第三,如果外部变量是某种比较大的集合,那么可以考虑使用fastutil改写外部变量,首先从源头上就减少内存的占用,通过广播变量进一步减少内存占用,再通过Kryo序列化类库进一步减少内存占用。
2、在你的算子函数里,也就是task要执行的计算逻辑里面,如果有逻辑中,出现,要创建比较大的Map、List等集合,可能会占用较大的内存空间,而且可能涉及到消耗性能的遍历、存取等集合操作;那么此时,可以考虑将这些集合类型使用fastutil类库重写,使用了fastutil集合类以后,就可以在一定程度上,减少task创建出来的集合类型的内存占用。避免executor内存频繁占满,频繁唤起GC,导致性能下降。
关于fastutil调优的说明:
fastutil其实没有你想象中的那么强大,也不会跟官网上说的效果那么一鸣惊人。广播变量、Kryo序列化类库、fastutil,都是之前所说的,对于性能来说,类似于一种调味品,烤鸡,本来就很好吃了,然后加了一点特质的孜然麻辣粉调料,就更加好吃了一点。分配资源、并行度、RDD架构与持久化,这三个就是烤鸡;broadcast、kryo、fastutil,类似于调料。
shuffle调优,15分钟;groupByKey用reduceByKey改写,执行本地聚合,也许10分钟;跟公司申请更多的资源,比如资源更大的YARN队列,1分钟。
fastutil的使用:
第一步:在pom.xml中引用fastutil的包
<dependency>
<groupId>fastutil</groupId>
<artifactId>fastutil</artifactId>
<version>5.0.9</version>
</dependency>
List<Integer> => IntList
基本都是类似于IntList的格式,前缀就是集合的元素类型;特殊的就是Map,Int2IntMap,代表了key-value映射的元素类型。除此之外,刚才也看到了,还支持object、reference。
数据本地化等待时长
PROCESS_LOCAL:进程本地化,代码和数据在同一个进程中,也就是在同一个executor中;计算数据的task由executor执行,数据在executor的BlockManager中;性能最好
NODE_LOCAL:节点本地化,代码和数据在同一个节点中;比如说,数据作为一个HDFS block块,就在节点上,而task在节点上某个executor中运行;或者是,数据和task在一个节点上的不同executor中;数据需要在进程间进行传输
NO_PREF:对于task来说,数据从哪里获取都一样,没有好坏之分
RACK_LOCAL:机架本地化,数据和task在一个机架的两个节点上;数据需要通过网络在节点之间进行传输
ANY:数据和task可能在集群中的任何地方,而且不在一个机架中,性能最差
spark.locality.wait,默认是3s
JVM调优
降低cache操作内存占比
每一次放对象的时候,都是放入eden区域,和其中一个survivor区域;另外一个survivor区域是空闲的。
当eden区域和一个survivor区域放满了以后(spark运行过程中,产生的对象实在太多了),就会触发minor gc,小型垃圾回收。把不再使用的对象,从内存中清空,给后面新创建的对象腾出来点儿地方。
清理掉了不再使用的对象之后,那么也会将存活下来的对象(还要继续使用的),放入之前空闲的那一个survivor区域中。这里可能会出现一个问题。默认eden、survior1和survivor2的内存占比是8:1:1。问题是,如果存活下来的对象是1.5,一个survivor区域放不下。此时就可能通过JVM的担保机制(不同JVM版本可能对应的行为),将多余的对象,直接放入老年代了。
如果你的JVM内存不够大的话,可能导致频繁的年轻代内存满溢,频繁的进行minor gc。频繁的minor gc会导致短时间内,有些存活的对象,多次垃圾回收都没有回收掉。会导致这种短声明周期(其实不一定是要长期使用的)对象,年龄过大,垃圾回收次数太多还没有回收到,跑到老年代。
老年代中,可能会因为内存不足,囤积一大堆,短生命周期的,本来应该在年轻代中的,可能马上就要被回收掉的对象。此时,可能导致老年代频繁满溢。频繁进行full gc(全局/全面垃圾回收)。full gc就会去回收老年代中的对象。full gc由于这个算法的设计,是针对的是,老年代中的对象数量很少,满溢进行full gc的频率应该很少,因此采取了不太复杂,但是耗费性能和时间的垃圾回收算法。full gc很慢。
full gc / minor gc,无论是快,还是慢,都会导致jvm的工作线程停止工作,stop the world。简而言之,就是说,gc的时候,spark停止工作了。等着垃圾回收结束。
内存不充足的时候,问题:
1、频繁minor gc,也会导致频繁spark停止工作
2、老年代囤积大量活跃对象(短生命周期的对象),导致频繁full gc,full gc时间很长,短则数十秒,长则数分钟,甚至数小时。可能导致spark长时间停止工作。
3、严重影响咱们的spark的性能和运行的速度。
----------------------------------------------------------------
JVM调优的第一个点:降低cache操作的内存占比
spark中,堆内存又被划分成了两块儿,一块儿是专门用来给RDD的cache、persist操作进行RDD数据缓存用的;另外一块儿,就是我们刚才所说的,用来给spark算子函数的运行使用的,存放函数中自己创建的对象。
默认情况下,给RDD cache操作的内存占比,是0.6,60%的内存都给了cache操作了。但是问题是,如果某些情况下,cache不是那么的紧张,问题在于task算子函数中创建的对象过多,然后内存又不太大,导致了频繁的minor gc,甚至频繁full gc,导致spark频繁的停止工作。性能影响会很大。
针对上述这种情况,大家可以在之前我们讲过的那个spark ui。yarn去运行的话,那么就通过yarn的界面,去查看你的spark作业的运行统计,很简单,大家一层一层点击进去就好。可以看到每个stage的运行情况,包括每个task的运行时间、gc时间等等。如果发现gc太频繁,时间太长。此时就可以适当调价这个比例。
降低cache操作的内存占比,大不了用persist操作,选择将一部分缓存的RDD数据写入磁盘,或者序列化方式,配合Kryo序列化类,减少RDD缓存的内存占用;降低cache操作内存占比;对应的,算子函数的内存占比就提升了。这个时候,可能,就可以减少minor gc的频率,同时减少full gc的频率。对性能的提升是有一定的帮助的。
一句话,让task执行算子函数时,有更多的内存可以使用。
spark.storage.memoryFraction,0.6 -> 0.5 -> 0.4 -> 0.2
executor对外内存与连接等待时长
executor堆外内存
有时候,如果你的spark作业处理的数据量特别特别大,几亿数据量;然后spark作业一运行,时不时的报错,shuffle file cannot find,executor、task lost,out of memory(内存溢出);
可能是说executor的堆外内存不太够用,导致executor在运行的过程中,可能会内存溢出;然后可能导致后续的stage的task在运行的时候,可能要从一些executor中去拉取shuffle map output文件,但是executor可能已经挂掉了,关联的block manager也没有了;所以可能会报shuffle output file not found;resubmitting task;executor lost;spark作业彻底崩溃。
上述情况下,就可以去考虑调节一下executor的堆外内存。也许就可以避免报错;此外,有时,堆外内存调节的比较大的时候,对于性能来说,也会带来一定的提升。
--conf spark.yarn.executor.memoryOverhead=2048
spark-submit脚本里面,去用--conf的方式,去添加配置;一定要注意!!!切记,不是在你的spark作业代码中,用new SparkConf().set()这种方式去设置,不要这样去设置,是没有用的!一定要在spark-submit脚本中去设置。
spark.yarn.executor.memoryOverhead(看名字,顾名思义,针对的是基于yarn的提交模式)
默认情况下,这个堆外内存上限大概是300多M;后来我们通常项目中,真正处理大数据的时候,这里都会出现问题,导致spark作业反复崩溃,无法运行;此时就会去调节这个参数,到至少1G(1024M),甚至说2G、4G
通常这个参数调节上去以后,就会避免掉某些JVM OOM的异常问题,同时呢,会让整体spark作业的性能,得到较大的提升。
此时呢,就会没有响应,无法建立网络连接;会卡住;ok,spark默认的网络连接的超时时长,是60s