Kruskal算法+邻接矩阵

本文深入探讨了Kruskal算法的工作原理及其在图论中的应用,详细解释了如何使用邻接矩阵来表示图,并展示了如何通过Kruskal算法找到最小生成树。通过对实例的分析,揭示了该算法在解决网络连接问题中的效率和实用性。
摘要由CSDN通过智能技术生成
// Kruskal.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include<iostream>
#include<string>
#include<vector>
#include<queue>
using namespace std;
struct EdgeNode
{
    int from;
    int to;
    int weight;
    friend bool operator<(EdgeNode a, EdgeNode b)//自定义优先级,weight小的优先
    {
        return a.weight > b.weight;
    }
};
template<class T>
class Graph
{
public:
    //构造函数,初始化具有n个顶点的图
    Graph(int* vertexArray, T* nameOfVertex, int numberOfVertex);
    void KruskalMST();//Kruskal算法
    int FindSet(int index);//查找集
    void UnionSet(int vertexFrom, int vertexTo);//合并集
    void PrintAdjacencyMatrix();
private:
    int vertexNum, arcNum; //图的顶点数和边数
    vector<vector<int>>adj
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值