大道至简,统计有道——概率统计随笔

提示:本文章内容参考了以下资料:【一高数】概率论与数理统计视频合集、【鸢尾花书】系列教材(【统计至简】)、【普林斯顿概率论读本】
一高数概率统计课程
鸢尾花书
普林斯顿概率论读本


前言(大道至简)

一门研究随机现象及其规律性的数学学科
我们所要学的概率论与数理统计简单来说就是两个字:随机
这里主要运用的到的工具就是大一的噩梦👿:高数,再具体点就是👌:微积分
不过让人少许安心的是我们这里的概率统计与之前所学的又有做不同:

  • 线性代数可以实现一题百解
  • 高等数学可以实现一题多解、
  • 而概率统计只存在一题一解。
    在这里插入图片描述

提示:以下是本篇文章正文内容,若有错误敬请指正,感激不尽🙏


一、随机事件与概率


随机试验

随机事件与样本空间

随机试验

  • 随机试验简称试验,记作 E E E
    • 可以在相同条件下重复进行。
    • 每次试验可能的结果不止一个,并且事先可以明确试验所有可能的结果
    • 进行一次试验之前不能确定出现哪一种结果。
  • 仅满足后两个条件的称为随机现象(也就是概率论与数理统计的研究对象)

样本点与样本空间

  • 样本点:试验 E E E中每个不可再分的结果,记作 ω \omega ω

  • 样本空间:试验 E E E中所有可能的结果(全体样本点:个数大于等于2)组成的集合,记作 Ω \Omega Ω

    • 离散样本空间:样本点有限个或者可列的
    • 连续样本空间:样本点无限个或者不可列的

随机事件

  • 试验 E E E的结果叫做随机事件,简称事件,对应的是样本空间 Ω \Omega Ω的一个子集。
  • 基本事件:一个样本点组成的单点集
  • 不可能事件:空集 ϕ \phi ϕ不包含任何样本点,但仍是样本空间子集
  • 必然事件:样本空间 Ω \Omega Ω中的所有样本点

事件发生:每次试验中:事件中有且仅有一个样本点出现。


事件的关系与运算

事件的关系

设定试验 E E E的样本空间 Ω \Omega Ω A 、 B 、 A k ( k = 1 , 2 , …   ) A、B、A_k(k=1,2,\dots) ABAk(k=1,2,)都是 Ω \Omega Ω的子集

  • 包含关系: A ⊂ B A\subset B AB:A发生必然导致B发生

  • 相等关系: A ⊂ B 且 B ⊂ A A\subset B 且 B\subset A ABBA,记作 A = B A=B A=B:想等事件包含相同样本点

  • 事件(事件的并): A ∪ B = { ω : ω ∈ A 或 ω ∈ B } A\cup B={\lbrace\omega:\omega\in A或\omega\in B\rbrace} AB={ω:ωAωB},记作 A + B A+B A+B:A或B至少有一个发生

    • n个事件的和事件: ⋃ k = 1 n A k = A 1 ∪ A 2 ∪ ⋯ ∪ A n \bigcup_{k=1}^n A_k=A_1\cup A_2\cup\dots\cup A_n k=1nAk=A1A2An
    • 可列个事件的和事件: ⋃ k = 1 ∞ A k = A 1 ∪ A 2 ∪ ⋯ ∪ A n … \bigcup_{k=1}^\infty A_k=A_1\cup A_2\cup\dots\cup A_n\dots k=1Ak=A1A2An
  • 事件(事件的交): A ∩ B = { ω : ω ∈ A 且 ω ∈ B } A\cap B={\lbrace\omega:\omega\in A 且\omega\in B\rbrace} AB={ω:ωAωB},记作 A B AB AB:A和B同时发生

    • n个事件的积事件: ⋂ k = 1 n A k = A 1 ∩ A 2 ∩ ⋯ ∩ A n \bigcap_{k=1}^n A_k=A_1\cap A_2\cap\dots\cap A_n k=1nAk=A1A2An
    • 可列个事件的积事件: ⋂ k = 1 ∞ A k = A 1 ∩ A 2 ∩ ⋯ ∩ A n … \bigcap_{k=1}^\infty A_k=A_1\cap A_2\cap\dots\cap A_n\dots k=1Ak=A1A2An
  • 事件: A − B = { ω : ω ∈ A 且 ω ∉ B } A-B={\lbrace\omega:\omega\in A且\omega\notin B\rbrace} AB={ω:ωAω/B},记作 A − B = A B ‾ A-B=A\overline{B} AB=AB:A发生且B不发生

  • 互斥事件(互不相容): A B = ϕ AB=\phi AB=ϕ:A和B不能同时发生

    • 基本事件都是两两互不相容的
  • 互逆(对立)事件: A ∪ B = Ω 且 A B = ϕ A\cup B=\Omega且AB=\phi AB=ΩAB=ϕ:对于每次试验,A和B必有且仅有一个发生。二者互为(逆)对立事件, A A A的对立事件记作 A ‾ \overline{A} A

    • A B = ϕ ⇔ A ⊂ B ‾ AB=\phi\Leftrightarrow A\subset \overline{B} AB=ϕAB
    • A ⊂ B ⇔ A B ‾ = ϕ A\subset B \Leftrightarrow A\overline{B}=\phi ABAB=ϕ

“数汉互译”的秘诀

关键法则:正难则反
原理和数字电子技术逻辑代数极其相似(个人认为)٩(•̤̀ᵕ•̤́๑)ᵒᵏᵎᵎᵎᵎ

事件的运算律

  • 交换律:

    • A ∪ B = B ∪ A A\cup B=B\cup A AB=BA
    • A ∩ B = B ∩ A A\cap B=B\cap A AB=BA
  • 结合律

    • A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A\cup(B\cup C)=(A\cup B)\cup C A(BC)=(AB)C
    • A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A\cap(B\cap C)=(A\cap B)\cap C A(BC)=(AB)C
  • 分配律

    • A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A\cup(B\cap C)=(A\cup B)\cap(A\cup C) A(BC)=(AB)(AC)
    • A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A\cap(B\cup C)=(A\cap B)\cup (A\cap C) A(BC)=(AB)(AC)
  • 对偶律(德摩根律)

    • A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline{A}\cap\overline{B} AB=AB

    • A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cap B}=\overline{A}\cup\overline{B} AB=AB

      • ⋃ i = 1 ∞ A i ‾ = ⋂ i = 1 ∞ A i ‾ \overline{\bigcup_{i=1}^\infty A_i}=\bigcap_{i=1}^\infty \overline{A_i} i=1Ai=i=1Ai
      • ⋂ i = 1 ∞ A i ‾ = ⋃ i = 1 ∞ A i ‾ \overline{\bigcap_{i=1}^\infty A_i}=\bigcup_{i=1}^\infty \overline{A_i} i=1Ai=i=1Ai

古典概型与几何概型

古典概型&排列组合

概率:随机事件 A A A发生的可能性的大小的度量叫做事件 A A A发生的概率,记作 P ( A ) P(A) P(A)
古典概型

  • 试验 E E E的样本空间 Ω \Omega Ω只包含有限个样本点,即 Ω = { ω 1 , ω 2 , … ω n } \Omega=\lbrace\omega_1,\omega_2,\dots\omega_n\rbrace Ω={ω1,ω2,ωn}
  • 每个样本点出现的可能性相同
  • 若事件 A A A k k k个基本事件组成: P ( A ) = k n = A 包含的基本事件数 Ω 中的基本事件总数 P(A)=\frac{k}{n}=\frac{A包含的基本事件数}{\Omega中的基本事件总数} P(A)=nk=Ω中的基本事件总数A包含的基本事件数

排列数

  • n n n个不同元素中取出 m ( m ≤ n ) m(m≤n) mmn个元素的所有排列的个数 A n m = n ( n − 1 ) … ( n − m + 1 ) = n ! ( n − m ) ! A_n^m=n(n-1)\dots(n-m+1)=\frac{n!}{(n-m)!} Anm=n(n1)(nm+1)=(nm)!n!
  • 全排列 A n n = n ! A_n^n=n! Ann=n! ( m = n 时 ) (m=n时) (m=n)

组合数

  • n n n个不同元素中取出 m ( m ≤ n ) m(m≤n) mmn个元素的所有组合的个数 C n m = n ( n − 1 ) … ( n − m + 1 ) m ! = n ! m ! ( n − m ) ! = ( n m ) C_n^m=\frac{n(n-1)\dots(n-m+1)}{m!}=\frac{n!}{m!(n-m)!}=\begin{pmatrix}n\\m\end{pmatrix} Cnm=m!n(n1)(nm+1)=m!(nm)!n!=(nm)
  • 性质(推理参考杨辉三角): ① : C n m = C n n − m ①:C_n^m=C_n^{n-m} :Cnm=Cnnm ②: C n + 1 m = C n m + C n m − 1 ②:C_{n+1}^{m}=C_n^m+C_n^{m-1} Cn+1m=Cnm+Cnm1

几何概型

将等可能事件的概念从有限向无限延伸

  • 试验 E E E的样本空间 Ω \Omega Ω是某个空间,设事件 A A A表示 M M M在该空间中随机落时,落在 G G G内: P ( A ) = G 的长度 ( 面积、体积 ) Ω 的长度 ( 面积、体积 ) P(A)=\frac{G的长度(面积、体积)}{\Omega的长度(面积、体积)} P(A)=Ω的长度(面积、体积)G的长度(面积、体积)

P ( G ) = 0 P(G)=0 P(G)=0有可能发生(几乎不可能发生),当 G G G是一个点时,该式子成立,
概率:事件发生可能性大小的度量(那么有度量必然存在或多或少的误差)

P ( A B ) = 0 P(AB)=0 P(AB)=0:A和B互斥 ⟺ \Longleftrightarrow AB是不可能事件,因此二者都错✖; P ( A ) = 0 或者 P ( B ) = 0 P(A)=0或者P(B)=0 P(A)=0或者P(B)=0也错✖;正确结果是:A和B可能同时发生。
同理: P ( A B ) = 1 P(AB)=1 P(AB)=1:不一定发生


概率公理化定义与性质

概率的统计性定义

  • 频率:相同条件下的 n n n次试验中,事件 A A A发生的次数 A n A_n An叫做事件 A A A发生的频数,比值 n A n \frac{n_A}{n} nnA叫做事件 A A A发生的频率,记作 f n ( A ) = n A n f_n(A)=\frac{n_A}{n} fn(A)=nnA

  • 性质

    • 0 ≤ f n ( A ) ≤ 1 0≤f_n(A)≤1 0fn(A)1
    • f n ( Ω ) = 1 f_n(\Omega)=1 fn(Ω)=1
    • A 1 , A 2 , A 3 , … A_1,A_2,A_3,\dots A1,A2,A3,两两互斥,也就是 A i ∩ A j = ϕ 且 i ≠ j A_i\cap A_j=\phi 且i≠j AiAj=ϕi=j时: f n ( A 1 ∪ A 2 ∪ …   ) = f n ( A 1 ) + f n ( A 2 ) + … f_n(A_1\cup A_2\cup\dots)=f_n(A_1)+f_n(A_2)+\dots fn(A1A2)=fn(A1)+fn(A2)+
  • 当重复实验次数 n → ∞ n\rightarrow\infty n时,频率 f n ( A ) f_n(A) fn(A)就会逐渐稳定于某个常熟 p p p,它就记作事件 A A A发生的概率,记作 P ( A ) = p P(A)=p P(A)=p(理论值)

概率的公理化定义

  • 定义:试验 E E E的样本空间为 Ω \Omega Ω,对 Ω \Omega Ω中的每一事件 A A A都赋予一个实数 P ( A ) P(A) P(A),叫做事件 A A A的概率
  • 集合函数 P ( ⋅ ) P(·) P()
    • 非负性:对于每一个事件 A A A,都有 P ( A ) ≥ 0 P(A)≥0 P(A)0
    • 规范性:对于必然事件 Ω \Omega Ω,则有 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
    • 可列可加性:若 A 1 , A 2 , A 3 , … A_1,A_2,A_3,\dots A1,A2,A3,两两互斥,也就是 A i ∩ A j = ϕ 且 i ≠ j A_i\cap A_j=\phi 且i≠j AiAj=ϕi=j时: f n ( A 1 ∪ A 2 ∪ …   ) = f n ( A 1 ) + f n ( A 2 ) + … f_n(A_1\cup A_2\cup\dots)=f_n(A_1)+f_n(A_2)+\dots fn(A1A2)=fn(A1)+fn(A2)+
  • 古典概型、几何概型都满足该定义。

概率的性质

  • 非负性:对于任意事件 A A A,都有 0 ≤ P ( A ) ≤ 1 0≤P(A)≤1 0P(A)1
  • 规范性
    • P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1(由必然事件可得) P ( Ω ) = P ( A ∪ A ‾ ) = P ( A ) + P ( A ‾ ) = 1 P(\Omega)=P(A\cup\overline{A})=P(A)+P(\overline{A})=1 P(Ω)=P(AA)=P(A)+P(A)=1
    • P ( ϕ ) = 0 P(\phi)=0 P(ϕ)=0 【证明如下】: P ( Ω ) = P ( Ω ∪ ϕ ∪ ϕ ∪ ϕ …   ) = P ( Ω ) + P ( ϕ ) + P ( ϕ ) + P ( ϕ ) + ⋯ = 1 P(\Omega)=P(\Omega\cup\phi\cup\phi\cup\phi\dots)\\=P(\Omega)+P(\phi)+P(\phi)+P(\phi)+\dots=1 P(Ω)=P(Ωϕϕϕ)=P(Ω)+P(ϕ)+P(ϕ)+P(ϕ)+=1 P ( ϕ ) + P ( ϕ ) + P ( ϕ ) + ⋯ = 0 P(\phi)+P(\phi)+P(\phi)+\dots=0 P(ϕ)+P(ϕ)+P(ϕ)+=0
  • 有限可加性:若事件 A 1 , A 2 , A 3 , … A_1,A_2,A_3,\dots A1,A2,A3,两两互斥,则有 P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^nA_i)=\sum_{i=1}^nP(A_i) P(i=1nAi)=i=1nP(Ai)【证明如下】: P ( ⋃ i = 1 n A i ) = P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ∪ ϕ ∪ ϕ ∪ …   ) = ∑ i = 1 n P ( A i ) + P ( ϕ ) + P ( ϕ ) + ⋯ = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^nA_i)=P(A_1\cup A_2\cup\dots\cup A_n\cup\phi\cup\phi\cup\dots)\\=\sum_{i=1}^nP(A_i)+P(\phi)+P(\phi)+\dots=\sum_{i=1}^nP(A_i) P(i=1nAi)=P(A1A2Anϕϕ)=i=1nP(Ai)+P(ϕ)+P(ϕ)+=i=1nP(Ai)
  • 对立事件:对于任意事件 A A A,都有 P ( A ‾ ) = 1 − P ( A ) P(\overline{A})=1-P(A) P(A)=1P(A)
  • 减法公式
    • 对于任意两个事件 A A A B B B,有 P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) P(A-B)=P(A\overline{B})=P(A)-P(AB) P(AB)=P(AB)=P(A)P(AB)【证明如下】: P ( A ) = P ( ( A − B ) ∪ A B ) = P ( A − B ) + P ( A B ) P(A)=P((A-B)\cup AB)=P(A-B)+P(AB) P(A)=P((AB)AB)=P(AB)+P(AB)
    • B ⊂ A B\subset A BA,有 P ( A − B ) = P ( A ) − P ( B ) ≥ 0 P(A-B)=P(A)-P(B)≥0 P(AB)=P(A)P(B)0
  • 加法公式
    • 对于任意两个事件 A A A B B B,有 P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB)【证明如下】: P ( A + B ) = P ( A ∪ ( B − A B ) ) = P ( A ) + P ( B − A B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A\cup(B-AB))=P(A)+P(B-AB)=P(A)+P(B)-P(AB) P(A+B)=P(A(BAB))=P(A)+P(BAB)=P(A)+P(B)P(AB)
    • 推广到 n n n个事件 A 1 , A 2 , A 3 , … A_1,A_2,A_3,\dots A1,A2,A3, P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j < k ≤ n P ( A i A j A k ) + ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 … A n ) P(\bigcup_{i=1}^nA_i)=\sum_{i=1}^nP(A_i)-\sum_{1≤i<j≤n}P(A_iA_j)+\sum_{1≤i<j<k≤n}P(A_iA_jA_k)+\dots+(-1)^{n-1}P(A_1A_2\dots A_n) P(i=1nAi)=i=1nP(Ai)1ijnP(AiAj)+1ijknP(AiAjAk)++(1)n1P(A1A2An)

敬请期待……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Stars_niu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值