Kruskal算法求最小生成树

Kruskal算法求最小生成树

 

——HM

 

 

    Kruskal算法是在稀疏图中求最短生成树的较好方法,其大体思路有点贪心的味道,下面来具体介绍。

    首先要了解什么是最小生成树。

    最小生成树

    最小生成树只在一个强连通的无向图中,删去几条边,使剩下来的图是一棵树,且权值和尽可能小。

 

 

   使一个图变成树很容易,只要使图中的边的数量比点的数量少1即可,但如何使剩下权值和最大,换言之,就是使删去的边权值和最大。

    思路

    这里介绍的Kruskal算法的思路是设一开始选中边数量为0,在任意时刻,我们从剩余边中选出一条权值最小的,且两个端点在生成森林中两棵不同的树中,把该边加入森林即可。

    怎么判断图中节点连通情况呢?有一种叫并查集的数据结构可以帮我们维护。

 

 

    流程

1建立并查集,初始化

2将所有边权值按从小到大序排列,依次扫描

3判断:若两端点在同一集合,则忽略

4否则合并两个端点并将权值累加到ans上

5扫描完所有边后,选中的边构成最小生成树,打印ans

 

 

时间复杂度:O(mlogm)

    AC代码:

 

#include <bits/stdc++.h>
using namespace std;
const int SIZE=200005;

struct node{
	int x,y,v;
}edge[SIZE];

bool cmp(node x,node y);
int get_edge(int x);

int n,m,father[SIZE],ans=0;

int main()
{
	int x,y;
	scanf("%d%d",&n,&m);
	for (int i=1;i<=m;i++)
		scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].v);

	sort(edge+1,edge+m+1,cmp);//按边权排序 
	
	for (int i=1;i<=n;i++) father[i]=i;//初始化并查集 
	//核心代码 
	for (int i=1;i<=m;i++){
		x=get_edge(edge[i].x);
		y=get_edge(edge[i].y);
		if (x==y) continue;
		father[x]=y;
		ans+=edge[i].v;
	}
	cout<<ans;
	
	return 0;
}

bool cmp(node x,node y)
{
	return x.v<y.v;
}

int get_edge(int x)//判断端点是否在一个集合中 
{
	if (x==father[x]) return x;
	return father[x]=get_edge(father[x]);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值