Kruskal算法求最小生成树
——HM
Kruskal算法是在稀疏图中求最短生成树的较好方法,其大体思路有点贪心的味道,下面来具体介绍。
首先要了解什么是最小生成树。
最小生成树
最小生成树只在一个强连通的无向图中,删去几条边,使剩下来的图是一棵树,且权值和尽可能小。
使一个图变成树很容易,只要使图中的边的数量比点的数量少1即可,但如何使剩下权值和最大,换言之,就是使删去的边权值和最大。
思路
这里介绍的Kruskal算法的思路是设一开始选中边数量为0,在任意时刻,我们从剩余边中选出一条权值最小的,且两个端点在生成森林中两棵不同的树中,把该边加入森林即可。
怎么判断图中节点连通情况呢?有一种叫并查集的数据结构可以帮我们维护。
流程
1建立并查集,初始化
2将所有边权值按从小到大序排列,依次扫描
3判断:若两端点在同一集合,则忽略
4否则合并两个端点并将权值累加到ans上
5扫描完所有边后,选中的边构成最小生成树,打印ans
时间复杂度:O(mlogm)
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int SIZE=200005;
struct node{
int x,y,v;
}edge[SIZE];
bool cmp(node x,node y);
int get_edge(int x);
int n,m,father[SIZE],ans=0;
int main()
{
int x,y;
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].v);
sort(edge+1,edge+m+1,cmp);//按边权排序
for (int i=1;i<=n;i++) father[i]=i;//初始化并查集
//核心代码
for (int i=1;i<=m;i++){
x=get_edge(edge[i].x);
y=get_edge(edge[i].y);
if (x==y) continue;
father[x]=y;
ans+=edge[i].v;
}
cout<<ans;
return 0;
}
bool cmp(node x,node y)
{
return x.v<y.v;
}
int get_edge(int x)//判断端点是否在一个集合中
{
if (x==father[x]) return x;
return father[x]=get_edge(father[x]);
}