约数——约数之和

简单

题目

传送门
题意:
做法:

中等

Sumdiv

传送门
题意:给定 a a a b b b,求 a b a^b ab 的约数和,对9901取模(0 <= a, b <= 50000000)
做法:对一个极大的数求约数和,很显然是要先将数字分解成素数幂的乘积,然后计算约数和,公式为
( 1 + p 1 + p 1 2 + . . . + p 1 c 1 ) ∗ ( 1 + p 2 + p 2 2 + . . . + p 2 c 2 ) ∗ . . . . . . (1 + p1 + p1^2 + ... + p1^{c1}) * (1 + p2 + p2^2 + ... + p2^{c2}) * ...... (1+p1+p12+...+p1c1)(1+p2+p22+...+p2c2)......
根据 b 的数据可以算出 ci 的区间为 [b, b * 26](26 是由 a 的范围得出的),所以如果暴力有很大可能超时,经过实践验证确实是会超时,需要更优的时间。
应当尽可能的将每一项的计算时间缩短,有两种快速算出该式子的方法
首先是等比数列求和公式, ( q n + 1 − 1 ) / ( q − 1 ) (q^{n+1}- 1) / (q - 1) (qn+11)/(q1)。这个公式做法非常简单,用快速幂和逆元就可以快速算出,但是对这题来说有一个坑点,这道题的模数是9901,对于素数 p 来说,p - 1 如果是 9901 的倍数,求逆元时就会返回 0,所以要对 (p - 1) % 9901 = 0 的情况特判,此时 p % 9901 = 1,求和公式直接变成 (c + 1)。
第二种方法就是递归求等比数列,用折半的思想递归,根据当前数列的数量奇偶使用不同的折半方法

LL get_(LL x, LL y)
{
    if(y == 0) return 1;
    else if(y % 2) return (get_(x, y / 2) * (1 + qmi(x, y / 2 + 1))) % mod;
    else return (get_(x, y / 2 - 1) * (1 + qmi(x, y / 2 + 1)) + qmi(x, y / 2)) % mod;
}

较难

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值