本文将详细解释1993年Huggett的经典论文:不完全保险经济中异质性行为者的无风险利率,并提供Matlab代码
Mark Huggett(1993). “The Risk-Free Rate in Heterogeneous-Agent Incomplete-Insurance Economies.” Journal of Economic Dynamics and Control (17), 953- 969.
===================================
在代表性行为者(representative-agent)模型中,计算出的无风险利率会显著高于真实的无风险利率(0.8%,见Mehra,Prescott,1985),而资本回报率又会过低,这就是所谓的股权溢价之谜(Equity premium puzzle)。这一问题的发生在于真实世界是偏离所谓的"Arrow-Debreu"完美市场。Arrow-Debreu个市场的一大特点就是所有行为者有完全保险,即可以任意借贷。在本篇文章中,Hugget发现在不完全保险的情况下(即有借贷限制),计算出的无风险利率会较代表性行为者模型中的低*,更接近真实值。
在有借贷限制且面临收入波动的条件下,人们由于不能完全保险,因此就要预防性存款(precautionary saving)。随着存款越来越多,债券市场无法达到均衡(出清),因此储蓄利率就要降低,以此促进存款向债券市场流动。
本文模型如下(原文第2节):
将一年分为6期**,每期中行为者会得到一份收入,如果他有工作则得到eh,如果是失业则得到el。
行为者的目标是最大化效用,其目标函数为:(1)
其中,sigma是风险规避参数,sigma越高,行为人越规避风险(sigma等于0时行为人风险中性)
行为人的消费约束是:c+a'q<=a+e(2),但我们更在意r,因此将其改写为c+k'<=(1+r)k+w(3),其中c>=0, 以及
,
是借贷限制。在本文中,一年有6期,一年的平均工资是5.3***,因此本文研究的借贷限制分别为-2,-4,-6,-8。综上,本文的目的是在(3)的约束条件下最大化(1),然后求出能使债券市场出清(净需求等于零)的无风险利率r。
为了求均衡****时的无风险利率,计算分为三步:
1.给定任意r,在这个r下求得行为人在工作或失业两个状态下的optimal policy function,即给定k时行为人如何选择k’。
2.根据转化矩阵计算财富分配*****
3.根据optimal policy function和财富分配计算债券市场是否出清。如果债券市场需求大于零,则降低利率(促使存款流入市场);如果需求小于零,则提高利率。然后根据新得到的r重复过程1,2,3,直到债券市场出清。
本文结论(原文第5、第6节)见Table1和2。作者在sigma为1.5和3,以及借贷界限分别是-2,-4,-6,-8时分别计算了利率与之对应的价格。作者发现,随着借贷界限的提高(可借的钱越来越少时),利率会降低。这是由于人们能借到的钱越来越少,因此预防性储蓄增多,所以利率要降低以促使存款流入债券市场。而sigma从1.5提高到3时,人们的风险意识提高,预防性储蓄增多,因此对应的利率也降低了。因此本文证明了,在有无法被完全保险的各异性收入波动的情况下,无风险利率会低于代表性行为者模型下计算出的结果*。
*这个值我尚未找到,Hugget说他的计算结果比之低1个百分点,如有知道的人,请告诉我
**尚不清楚为什么要校准为六期
***尚不清楚如何计算
****原文第3节证明了这个均衡存在,本文暂不涉及。
*****Roman的Code中尚存在一定的计算问题
===============================================
接下来,我们将试图重复论文的结果(即Table 1与Table 2)。这里我将提供两份Matlab Code,一份是Brandeis大学George Hall的(http://people.brandeis.edu/~ghall/econ303/),一份是根据Queen Mary University of London大学Roman