人多时容易胜出还是人少时容易胜出?团体大小与获胜率的关系

本文探讨了在不同团体大小下,个人获胜的概率如何变化。通过数学模型和蒙特卡洛模拟,作者发现团体越大,对于能力较高的人来说获胜率可能更高,而对于能力较低者则更难胜出。当选拔条件苛刻如100进1时,即使是高手获胜概率也会显著降低。此外,文章提供了Matlab代码以进行不同分布的模拟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前日朋友说要参加面试,5个人录1个人,我觉得这真是太激烈了。然而后来得知是50个人录取10个人,我又觉得没那么难了。那么,我的感觉对嘛?团体大小与获胜率有什么关系呢?

=======================================

虽然博弈论很难,但是拍卖理论的order statistic启发了我!这个问题有点接近于出价多少能超过多少竞争者,而竞争者的出价是随机获得的。因此我想考虑的问题的本质是:给定一个能力水平,在不同竞争者团体大小的条件下,研究获胜的概率(我们假设能力大者胜)。

如果我们想要知道得第一的概率,那就是p^(n-1)。n是团体大小,p是有多少比例的人能力低于研究对象。假设人群能力分布是在(0,1)的区间上均一分布,如果研究对象的能力是0.9,那么p=0.9。n=2时,他胜出的概率就是0.9,n=3时,胜出概率0.9^2=0.81......这个情况下当然是团体越大,获胜越难,因为每多一个人他能力都可能高过你。

麻烦的是类似于5进1的情况,直觉上看,5进1的难度似乎高过50进10,那我们能证明这点嘛?

首先考虑最简单的情况:5进1,概率就是0.9^4=0.66。那10进2呢&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值