day 41 | ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

198.打家劫舍

dp的含义是截至到这家的最高收益是多少。
所以递推公式就是对比偷这家或者不偷这家的收益最多。

func rob(nums []int) int {
    dp := make([]int, len(nums) + 1)
    dp[1] = nums[0]
    if len(nums) < 2{
        return dp[len(nums)]
    }
    dp[2] = max(nums[0], nums[1]) 
    for i := 3; i <= len(nums); i++{
        dp[i] = max(dp[i - 2] + nums[i - 1], dp[i - 1])
    }
    return dp[len(nums)]
}
func max(a, b int)int{
    if a > b{
        return a
    }
    return b
}

213.打家劫舍II

因为是环形,所以就是第一家和最后一家也不能共存了,
因此可以比较没有第一家或者没有最后一家哪种情况更多。

// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
        int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
        return max(result1, result2);
    }
    // 198.打家劫舍的逻辑
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};

337.打家劫舍III

这个题需要构建树形dp来解决问题
每次要记录选和不选两种状态

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func rob(root *TreeNode) int {
    //ret := make([]int, 2)
    var build func(*TreeNode)[]int
    build = func(node *TreeNode)[]int{
        if node == nil {
            return[]int{0 , 0}
        }
        left := build(node.Left)
        right := build(node.Right)
        val1 := node.Val + left[0] + right[0]
        val2 := max(left[0], left[1]) + max(right[0], right[1])
        return[]int{val2,val1 }
    }
    ret := build(root)
    return max(ret[0], ret[1])

}
func max(a, b int)int{
    if a < b{
        return b
    }
    return a
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值