198.打家劫舍
dp的含义是截至到这家的最高收益是多少。
所以递推公式就是对比偷这家或者不偷这家的收益最多。
func rob(nums []int) int {
dp := make([]int, len(nums) + 1)
dp[1] = nums[0]
if len(nums) < 2{
return dp[len(nums)]
}
dp[2] = max(nums[0], nums[1])
for i := 3; i <= len(nums); i++{
dp[i] = max(dp[i - 2] + nums[i - 1], dp[i - 1])
}
return dp[len(nums)]
}
func max(a, b int)int{
if a > b{
return a
}
return b
}
213.打家劫舍II
因为是环形,所以就是第一家和最后一家也不能共存了,
因此可以比较没有第一家或者没有最后一家哪种情况更多。
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
return max(result1, result2);
}
// 198.打家劫舍的逻辑
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
337.打家劫舍III
这个题需要构建树形dp来解决问题
每次要记录选和不选两种状态
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rob(root *TreeNode) int {
//ret := make([]int, 2)
var build func(*TreeNode)[]int
build = func(node *TreeNode)[]int{
if node == nil {
return[]int{0 , 0}
}
left := build(node.Left)
right := build(node.Right)
val1 := node.Val + left[0] + right[0]
val2 := max(left[0], left[1]) + max(right[0], right[1])
return[]int{val2,val1 }
}
ret := build(root)
return max(ret[0], ret[1])
}
func max(a, b int)int{
if a < b{
return b
}
return a
}