[leetcode#313]超级丑数

class Solution {
public:
    int nthSuperUglyNumber(int n, vector<int>& primes) {
        vector<int> ugly(n,INT_MAX);
        int num=primes.size();
        vector<int> store(num,0);
        ugly[0]=1;
        for(int i=1;i<n;i++){
            for(int j=0;j<num;j++){
                ugly[i]=min(ugly[i],ugly[store[j]]*primes[j]);
            }
            for(int j=0;j<num;j++){
                while(ugly[i]>=ugly[store[j]]*primes[j]) store[j]++;
            }
        }
        return ugly[n-1];
    }
};

丑数集合中的每一个数都是primes集合中元素的幂的乘积。

假设我们现在已经找到了最小的前k个丑数,现在我们要找第k+1个丑数,则这个数一定是前k个丑数中的一个数和primes集合中的一个数的乘积。

反证,假设第k+1个丑数是两个不属于primes的丑数的乘积,也就是两个合数a和b。设t是b的任意一个质因数,a*b/t也是丑数。如果该数不在前k个丑数中,那么a*b/t显然比a*b更小;如果a*b/t在前k个丑数当中,那么a*b=(a*b/t)*t,可以写成前k个丑数中的一个数和primes集合中的一个数的乘积的形式。

得证。

于是我们为primes中的每个质数保存一个指针,指向已找出的丑数数组的某个位置,保证该位置之前的丑数与这个质数的乘积已经在集合当中。所以在找下一个丑数时,只需要在n个point[i]*primes[i]中找出最小值就行了。

发布了4 篇原创文章 · 获赞 0 · 访问量 132
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览