一、Bellman_ford 队列优化算法(又名SPFA)
背景
SPFA的称呼来自 1994年西南交通大学段凡丁的论文,其实Bellman_ford 提出后不久 (20世纪50年代末期) 就有队列优化的版本,国际上不承认这个算法是是国内提出的。 所以国际上一般称呼 该算法为 Bellman_ford 队列优化算法(Queue improved Bellman-Ford)
Bellman_ford 算法每次松弛 都是对所有边进行松弛。但真正有效的松弛,是基于已经计算过的节点在做的松弛。
给大家举一个例子:
本图中,对所有边进行松弛,真正有效的松弛,只有松弛 边(节点1->节点2) 和 边(节点1->节点3) 。
而松弛 边(节点4->节点6) ,边(节点5->节点3)等等 都是无效的操作,因为 节点4 和 节点 5 都是没有被计算过的节点。
所以 Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。
只需要对 上一次松弛的时候更新过的节点作为出发节点所连接的边 进行松弛就够了。
基于以上思路,如何记录 上次松弛的时候更新过的节点呢?
用队列来记录。(其实用栈也行,对元素顺序没有要求)
模拟过程
接下来来举例这个队列是如何工作的。
以示例给出的所有边为例:
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5
我们依然使用minDist数组来表达 起点到各个节点的最短距离,例如minDist[3] = 5 表示起点到达节点3 的最小距离为5
初始化,起点为节点1, 起点到起点的最短距离为0,所以minDist[1] 为 0。 将节点1 加入队列 (下次松弛从节点1开始)
从队列里取出节点1,松弛节点1 作为出发点连接的边(节点1 -> 节点2)和边(节点1 -> 节点3)
边:节点1 -> 节点2,权值为1 ,minDist[2] > minDist[1] + 1 ,更新 minDist[2] = minDist[1] + 1 = 0 + 1 = 1 。
边:节点1 -> 节点3,权值为5 ,minDist[3] > minDist[1] + 5,更新 minDist[3] = minDist[1] + 5 = 0 + 5 = 5。
将节点2、节点3 加入队列,如图:
从队列里取出节点2,松弛节点2 作为出发点连接的边(节点2 -> 节点4)和边(节点2 -> 节点5)
边:节点2 -> 节点4,权值为1 ,minDist[4] > minDist[2] + (-3) ,更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2 。
边:节点2 -> 节点5,权值为2 ,minDist[5] > minDist[2] + 2 ,更新 minDist[5] = minDist[2] + 2 = 1 + 2 = 3 。
将节点4,节点5 加入队列,如图:
从队列里出去节点3,松弛节点3 作为出发点连接的边。
因为没有从节点3作为出发点的边,所以这里就从队列里取出节点3就好,不用做其他操作,如图:
从队列中取出节点4,松弛节点4作为出发点连接的边(节点4 -> 节点6)
边:节点4 -> 节点6,权值为4 ,minDist[6] > minDist[4] + 4,更新 minDist[6] = minDist[4] + 4 = -2 + 4 = 2 。
将节点6加入队列
如图:
从队列中取出节点5,松弛节点5作为出发点连接的边(节点5 -> 节点3),边(节点5 -> 节点6)
边:节点5 -> 节点3,权值为1 ,minDist[3] > minDist[5] + 1 ,更新 minDist[3] = minDist[5] + 1 = 3 + 1 = 4
边:节点5 -> 节点6,权值为-2 ,minDist[6] > minDist[5] + (-2) ,更新 minDist[6] = minDist[5] + (-2) = 3 - 2 = 1
如图,将节点3加入队列,因为节点6已经在队列里,所以不用重复添加
所以我们在加入队列的过程可以有一个优化,用visited数组记录已经在队列里的元素,已经在队列的元素不用重复加入
从队列中取出节点6,松弛节点6 作为出发点连接的边。
节点6作为终点,没有可以出发的边。
同理从队列中取出节点3,也没有可以出发的边
所以直接从队列中取出,如图:
这样我们就完成了基于队列优化的bellman_ford的算法模拟过程。
基于队列优化的算法,要比bellman_ford 算法 减少很多无用的松弛情况,特别是对于边数众多的大图 优化效果明显。
在上面模拟过程中,每次都要知道 一个节点作为出发点连接了哪些节点。
整体代码如下:
#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;
struct Edge { //邻接表
int to; // 链接的节点
int val; // 边的权重
Edge(int t, int w): to(t), val(w) {} // 构造函数
};
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<list<Edge>> grid(n + 1);
vector<bool> isInQueue(n + 1); // 加入优化,已经在队里里的元素不用重复添加
// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
queue<int> que;
que.push(start);
while (!que.empty()) {
int node = que.front(); que.pop();
isInQueue[node] = false; // 从队列里取出的时候,要取消标记,我们只保证已经在队列里的元素不用重复加入
for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int value = edge.val;
if (minDist[to] > minDist[from] + value) { // 开始松弛
minDist[to] = minDist[from] + value;
if (isInQueue[to] == false) { // 已经在队列里的元素不用重复添加
que.push(to);
isInQueue[to] = true;
}
}
}
}
if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径
}
效率分析
队列优化版Bellman_ford 的时间复杂度 并不稳定,效率高低依赖于图的结构。
例如 如果是一个双向图,且每一个节点和所有其他节点都相连的话,那么该算法的时间复杂度就接近于 Bellman_ford 的 O(N * E) N 为节点数量,E为边的数量。
在这种图中,每一个节点都会重复加入队列 n - 1次,因为 这种图中 每个节点 都有 n-1 条指向该节点的边,每条边指向该节点,就需要加入一次队列。
如果图越稠密,则 SPFA的效率越接近与 Bellman_ford。反之,图越稀疏,SPFA的效率就越高。
一般来说,SPFA 的时间复杂度为 O(K * N) K 为不定值,因为 节点需要计入几次队列取决于 图的稠密度。
如果图是一条线形图且单向的话,每个节点的入度为1,那么只需要加入一次队列,这样时间复杂度就是 O(N)。
所以 SPFA 在最坏的情况下是 O(N * E),但 一般情况下 时间复杂度为 O(K * N)。
并没有计算 出队列 和 入队列的时间消耗。 因为这个在不同语言上 时间消耗也是不一定的。
以C++为例,以下两段代码理论上,时间复杂度都是 O(n) :
for (long long i = 0; i < n; i++) {
k++;
}
for (long long i = 0; i < n; i++) {
que.push(i);
que.front();
que.pop();
}
在 MacBook Pro (13-inch, M1, 2020) 机器上分别测试这两段代码的时间消耗情况:
- n = 10^4,第一段代码的时间消耗:1ms,第二段代码的时间消耗: 4 ms
- n = 10^5,第一段代码的时间消耗:1ms,第二段代码的时间消耗: 13 ms
- n = 10^6,第一段代码的时间消耗:4ms,第二段代码的时间消耗: 59 ms
- n = 10^7,第一段代码的时间消耗: 24ms,第二段代码的时间消耗: 463 ms
- n = 10^8,第一段代码的时间消耗: 135ms,第二段代码的时间消耗: 4268 ms
在这里就可以看出 出队列和入队列 其实也是十分耗时的。
SPFA(队列优化版Bellman_ford) 在理论上 时间复杂度更胜一筹,但实际上,也要看图的稠密程度,如果 图很大且非常稠密的情况下,虽然 SPFA的时间复杂度接近Bellman_ford,但实际时间消耗 可能是 SPFA耗时更多。
拓展
while (!que.empty())
队里里 会不会造成死循环? 例如 图中有环,这样一直有元素加入到队列里?
其实有环的情况,要看它是 正权回路 还是 负权回路。
题目描述中,已经说了,本题没有 负权回路 。
如图:
正权回路 就是有环,但环的总权值为正数。
在有环且只有正权回路的情况下,即使元素重复加入队列,最后,也会因为 所有边都松弛后,节点数值(minDist数组)不在发生变化了 而终止。
(而且有重复元素加入队列是正常的,多条路径到达同一个节点,节点必要要选择一个最短的路径,而这个节点就会重复加入队列进行判断,选一个最短的)
所以本题我们使用队列优化,有元素重复加入队列,也会因为最后 minDist数组 不会在发生变化而终止。
节点再加入队列,需要有松弛的行为, 而 每个节点已经都计算出来 起点到该节点的最短路径,那么就不会有 执行这个判断条件if (minDist[to] > minDist[from] + value)
,从而不会有新的节点加入到队列。
但如果本题有 负权回路,那情况就不一样了,我在下一题目讲解中,会重点讲解 负权回路 带来的变化。
二、Bellman_ford判断负权回路
本题是上一题延伸题目。要我们判断 负权回路,也就是图中出现环且环上的边总权值为负数。
如果在这样的图中求最短路的话, 就会在这个环里无限循环 (也是负数+负数 只会越来越小),无法求出最短路径。
所以对于 在有负权值的图中求最短路,都需要先看看这个图里有没有负权回路。
接下来我们来看 如何使用 bellman_ford 算法来判断 负权回路。在没有负权回路的图中,松弛 n 次以上 ,结果不会有变化。
但本题有 负权回路,如果松弛 n 次,结果就会有变化了,因为 有负权回路 就是可以无限最短路径(一直绕圈,就可以一直得到无限小的最短距离)。
那么每松弛一次,都会更新最短路径,所以结果会一直有变化。
拿题目中示例来画一个图:
图中 节点1 到 节点4 的最短路径是多少(题目中的最低运输成本) (注意边可以为负数的)
节点1 -> 节点2 -> 节点3 -> 节点4,这样的路径总成本为 -1 + 1 + 1 = 1
而图中有负权回路:
那么我们在负权回路中多绕一圈,最短路径 是不是就更小了 (也就是更低的运输成本)
节点1 -> 节点2 -> 节点3 -> 节点1 -> 节点2 -> 节点3 -> 节点4,这样的路径总成本 (-1) + 1 + (-1) + (-1) + 1 + (-1) + 1 = -1
如果在负权回路多绕两圈,三圈,无穷圈,那么我们的总成本就会无限小, 如果要求最小成本的话,你会发现本题就无解了。
在 bellman_ford 算法中,松弛 n-1 次所有的边 就可以求得 起点到任何节点的最短路径,松弛 n 次以上,minDist数组(记录起到到其他节点的最短距离)中的结果也不会有改变
而本题有负权回路的情况下,一直都会有更短的最短路,所以 松弛 第n次,minDist数组 也会发生改变。
那么解决本题的 核心思路,就是在 上一题的基础上,再多松弛一次,看minDist数组 是否发生变化。
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<vector<int>> grid;
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
bool flag = false;
for (int i = 1; i <= n; i++) { // 这里我们松弛n次,最后一次判断负权回路
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
if (i < n) {
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
} else { // 多加一次松弛判断负权回路
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) flag = true;
}
}
}
if (flag) cout << "circle" << endl;
else if (minDist[end] == INT_MAX) {
cout << "unconnected" << endl;
} else {
cout << minDist[end] << endl;
}
}
- 时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
- 空间复杂度: O(N) ,即 minDist 数组所开辟的空间
拓展
本题可不可 使用 队列优化版的bellman_ford(SPFA)呢?
上面的解法中,我们对所有边松弛了n-1次后,在松弛一次,如果出现minDist出现变化就判断有负权回路。
如果使用 SPFA 那么节点都是进队列的,那么节点进入队列几次后 足够判断该图是否有负权回路呢?
那么如果节点加入队列的次数 超过了 n-1次 ,那么该图就一定有负权回路。
所以本题也是可以使用 SPFA 来做的。 代码如下:
#include <iostream>
#include <vector>
#include <queue>
#include <list>
#include <climits>
using namespace std;
struct Edge { //邻接表
int to; // 链接的节点
int val; // 边的权重
Edge(int t, int w): to(t), val(w) {} // 构造函数
};
int main() {
int n, m, p1, p2, val;
cin >> n >> m;
vector<list<Edge>> grid(n + 1); // 邻接表
// 将所有边保存起来
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));
}
int start = 1; // 起点
int end = n; // 终点
vector<int> minDist(n + 1 , INT_MAX);
minDist[start] = 0;
queue<int> que;
que.push(start); // 队列里放入起点
vector<int> count(n+1, 0); // 记录节点加入队列几次
count[start]++;
bool flag = false;
while (!que.empty()) {
int node = que.front(); que.pop();
for (Edge edge : grid[node]) {
int from = node;
int to = edge.to;
int value = edge.val;
if (minDist[to] > minDist[from] + value) { // 开始松弛
minDist[to] = minDist[from] + value;
que.push(to);
count[to]++;
if (count[to] == n) {// 如果加入队列次数超过 n-1次 就说明该图与负权回路
flag = true;
while (!que.empty()) que.pop();
break;
}
}
}
}
if (flag) cout << "circle" << endl;
else if (minDist[end] == INT_MAX) {
cout << "unconnected" << endl;
} else {
cout << minDist[end] << endl;
}
}
三、Bellman_ford单源有限最短路
本题为单源有限最短路问题,同样是 第一题延伸题目。
注意题目中描述是 最多经过 k 个城市的条件下,而不是一定经过k个城市,也可以经过的城市数量比k小,但要最短的路径。
节点数量为n,起点到终点,最多是 n-1 条边相连。 那么对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。
本题是最多经过 k 个城市, 那么是 k + 1条边相连的节点。 来看这个图:
图中,节点1 最多已经经过2个节点 到达节点4,那么中间是有多少条边呢,是 3 条边。
所以本题就是求:起点最多经过k + 1 条边到达终点的最短距离。
对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离,那么对所有边松弛 k + 1次,就是求 起点到达 与起点k + 1条边相连的节点的 最短距离。
理解以上内容,其实本题代码就很容易了,bellman_ford 标准写法是松弛 n-1 次,本题就松弛 k + 1次就好。
此时我们可以写出如下代码:
// 版本一
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;
int main() {
int src, dst,k ,p1, p2, val ,m , n;
cin >> n >> m;
vector<vector<int>> grid;
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});
}
cin >> src >> dst >> k;
vector<int> minDist(n + 1 , INT_MAX);
minDist[src] = 0;
for (int i = 1; i <= k + 1; i++) { // 对所有边松弛 k + 1次
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
}
}
if (minDist[dst] == INT_MAX) cout << "unreachable" << endl; // 不能到达终点
else cout << minDist[dst] << endl; // 到达终点最短路径
}
以上代码 标准 bellman_ford 写法,松弛 k + 1次,看上去没什么问题。提交不通过
接下来我们拿这组数据来举例:
4 4
1 2 -1
2 3 1
3 1 -1
3 4 1
1 4 3
(注意上面的示例是有负权回路的,只有带负权回路的图才能说明问题)
负权回路是指一条道路的总权值为负,这样的回路使得通过反复经过回路中的道路,理论上可以无限地减少总成本或无限地增加总收益。
正常来说,这组数据输出应该是 1,但以上代码输出的是 -2。
打印的代码可以是这样:
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;
int main() {
int src, dst,k ,p1, p2, val ,m , n;
cin >> n >> m;
vector<vector<int>> grid;
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid.push_back({p1, p2, val});
}
cin >> src >> dst >> k;
vector<int> minDist(n + 1 , INT_MAX);
minDist[src] = 0;
for (int i = 1; i <= k + 1; i++) { // 对所有边松弛 k + 1次
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) minDist[to] = minDist[from] + price;
}
// 打印 minDist 数组
for (int j = 1; j <= n; j++) cout << minDist[j] << " ";
cout << endl;
}
if (minDist[dst] == INT_MAX) cout << "unreachable" << endl; // 不能到达终点
else cout << minDist[dst] << endl; // 到达终点最短路径
}
接下来,我按照上面的示例带大家 画图举例 对所有边松弛一次 的效果图。
起点为节点1, 起点到起点的距离为0,所以 minDist[1] 初始化为0 ,如图:
其他节点对应的minDist初始化为max,因为我们要求最小距离,那么还没有计算过的节点 默认是一个最大数,这样才能更新最小距离。
当我们开始对所有边开始第一次松弛:
边:节点1 -> 节点2,权值为-1 ,minDist[2] > minDist[1] + (-1),更新 minDist[2] = minDist[1] + (-1) = 0 - 1 = -1 ,如图:
边:节点2 -> 节点3,权值为1 ,minDist[3] > minDist[2] + 1 ,更新 minDist[3] = minDist[2] + 1 = -1 + 1 = 0 ,如图:
边:节点3 -> 节点1,权值为-1 ,minDist[1] > minDist[3] + (-1),更新 minDist[1] = 0 + (-1) = -1 ,如图:
边:节点3 -> 节点4,权值为1 ,minDist[4] > minDist[3] + 1,更新 minDist[4] = 0 + (-1) = -1 ,如图:
以上是对所有边进行的第一次松弛,最后 minDist数组为 :-1 -1 0 1 ,(从下标1算起)
后面几次松弛我就不挨个画图了,过程大同小异,我直接给出minDist数组的变化:
所有边进行的第二次松弛,minDist数组为 : -2 -2 -1 0 所有边进行的第三次松弛,minDist数组为 : -3 -3 -2 -1 所有边进行的第四次松弛,minDist数组为 : -4 -4 -3 -2 (本示例中k为3,所以松弛4次)
最后计算的结果minDist[4] = -2,即 起点到 节点4,最多经过 3 个节点的最短距离是 -2,但 正确的结果应该是 1,即路径:节点1 -> 节点2 -> 节点3 -> 节点4。
理论上来说,对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。
对所有边松弛两次,相当于计算 起点到达 与起点两条边相连的节点的最短距离。
对所有边松弛三次,以此类推。
但在对所有边松弛第一次的过程中,大家会发现,不仅仅 与起点一条边相连的节点更新了,所有节点都更新了。
而且对所有边的后面几次松弛,同样是更新了所有的节点,说明 至多经过k 个节点 这个限制 根本没有限制住,每个节点的数值都被更新了。
这是为什么?
在上面画图距离中,对所有边进行第一次松弛,在计算 边(节点2 -> 节点3) 的时候,更新了 节点3。
理论上来说节点3 应该在对所有边第二次松弛的时候才更新。 这因为当时是基于已经计算好的 节点2(minDist[2])来做计算了。
minDist[2]在计算边:(节点1 -> 节点2)的时候刚刚被赋值为 -1。
这样就造成了一个情况,即:计算minDist数组的时候,基于了本次松弛的 minDist数值,而不是上一次 松弛时候minDist的数值。
所以在每次计算 minDist 时候,要基于 对所有边上一次松弛的 minDist 数值才行,所以我们要记录上一次松弛的minDist。
代码修改如下: (关键地方已经注释)
// 版本二
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;
int main() {
int src, dst,k ,p1, p2, val ,m , n;
cin >> n >> m;
vector<vector<int>> grid;
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid.push_back({p1, p2, val});
}
cin >> src >> dst >> k;
vector<int> minDist(n + 1 , INT_MAX);
minDist[src] = 0;
vector<int> minDist_copy(n + 1); // 用来记录上一次遍历的结果
for (int i = 1; i <= k + 1; i++) {
minDist_copy = minDist; // 获取上一次计算的结果
for (vector<int> &side : grid) {
int from = side[0];
int to = side[1];
int price = side[2];
// 注意使用 minDist_copy 来计算 minDist
if (minDist_copy[from] != INT_MAX && minDist[to] > minDist_copy[from] + price) {
minDist[to] = minDist_copy[from] + price;
}
}
}
if (minDist[dst] == INT_MAX) cout << "unreachable" << endl; // 不能到达终点
else cout << minDist[dst] << endl; // 到达终点最短路径
}
- 时间复杂度: O(K * E) , K为至多经过K个节点,E为图中边的数量
- 空间复杂度: O(N) ,即 minDist 数组所开辟的空间