C++解决田忌赛马问题

 原题:假设每匹马都有恒定的速度,所以速度大的马一定比速度小的马先到终点(没有意外!!)。不允许出现平局。最后谁赢的场数多于一半(不包括一半),谁就是赢家(可能没有赢家)。老王有N(1≤N≤1000)匹马参加比赛。对手的马的数量与渊子马的数量一样,并且知道所有的马的速度。聪明的你来预测一下这场世纪之战的结果,看看老王能否赢得比赛。

输入有多组测试数据。 
每组测试数据包括3行: 
第一行输入N(1≤N≤1000)。表示马的数量。 
第二行有N个整型数字,即渊子的N匹马的速度。 
第三行有N个整型数字,即对手的N匹马的速度。 
当N为0时退出。

解题思路:

  1. 将双方马的速度放入矢量

  2. 将双方马的速度进行排序

  3. 逐一对比速度,记k为胜场

  4. 如果胜场超过一半则输出结果

  5. 如果不足一半则将老王马的速度整体前移1个位置,有一次超过则输出YES,否则继续循环

  6. 当超过循环次数到n时flag仍为0则判断失败,输出NO

注意事项:

别把k=0的位置放错(失败教训了属于是)

参考代码:

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
    int n;
    while (cin >> n)
    {
        if (n == 0)
        {
            break;
        }
        else
        {
            vector<int> a1;
            vector<int> a2;
            int m;
            for (int i = 0; i < n; i++)//将数据填入vector数组
            {
                cin >> m;
                a1.push_back(m);
            }
            for (int i = 0; i < n; i++)
            {
                cin >> m;
                a2.push_back(m);
            }
            int k;
            int x = 0;
            sort(a1.begin(), a1.end());//分别对两个数组从小到大排序
            sort(a2.begin(), a2.end());
            int flag = 0;
            while (x < n)
            {
                k = 0;
                for (int t = 0; t < n; t++)
                {
                    if (a1[t] > a2[t])
                    {
                        k += 1;
                    }
                }
                if (k > n / 2)//如果成立则直接输出
                {
                    cout << "YES" << endl;
                    flag = 1;
                    break;
                }
                else//不成立则将老王的数组整体前移一位
                {
                    int y = a1[0];
                    for (int i = 0; i < n - 1; i++)
                    {
                        a1[i] = a1[i + 1];
                        a1[n - 1] = y;
                    }
                    x += 1;//测试次数+1
                }
            }
            if (flag == 0)//如果无法成立,输出NO
            {
                cout << "NO" << endl;
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值