实验——田忌赛马c++

该博客讨论了经典的田忌赛马问题的扩展版,当马匹数量增加到n匹(n<=100)时如何通过算法策略帮助田忌赢得最多的银子。利用贪心算法进行分析,首先比较双方最快马的速度,然后对比最慢马的速度,以确定最佳比赛顺序。博主提供了C++代码实现,旨在解决如何在马的速度已知且不同的情况下,确保田忌赢得超过一半的比赛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

故事概述:
孙膑先以下等马对齐威王的上等马,第一局田忌输了。接着进行第二场比赛。孙膑拿上等马对齐威王的中等马,获胜了一局。 第三局比赛,孙膑拿中等马对齐威王的下等马,又战胜了一局。 比赛的结果是三局两胜,田忌赢了齐威王。 还是同样的马匹,由于调换一下比赛的出场顺序,就得到转败为胜的结果。

问题描述
如果3匹马变成n匹(n<=100),齐王仍然让他的马按照优到劣的顺序初赛,田忌可以按任意顺序选择他的赛马出赛。赢一局,田忌可以得到200两银子;输一局,田忌就要输掉200两银子。已知道国王和田忌的所有马的奔跑速度,并且所有马的奔跑速度均不相同,现已经对两人的马分别从快到慢排好序。请设计一个算法,帮助田忌赢得最多的银子。
要求
输入:第一行一个整数n,表示双方各有n匹马;
第二行n个整数分别表示田忌的n匹马的速度;
第三行n个整数分别表示齐王的n匹马的速度。
输出:若通过聪明的你精心安排,如果能赢得比赛(赢的次数大于比赛总次数的一半),那么输出“YES”。 否则输出“NO”。并输出一个整数,代表田忌最多能赢多少两黄金。
分析:

贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择,就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解

  • 如果田忌最快的马比齐王最快的马快,则比之

田忌赛马问题可以用矩阵博弈的方式来求解。假设田忌和齐王各有n匹马,马的速度不一样,田忌和齐王都知道各自马的速度,但不知道对方马的速度。现在要进行一场比赛,规则是田忌和齐王每次各选出一匹马进行比赛,速度快的获胜。每场比赛一分,平局不得分,了不得分。比赛进行n场,求田忌最多能得多少分。 矩阵博弈的思路是构造一个n*n的矩阵,第i行第j列表示田忌用第i匹马与齐王用第j匹马比赛的得分。例如,第一行表示田忌用自己最快的马与齐王用不同的马比赛的得分,第二行表示田忌用自己第二快的马与齐王用不同的马比赛的得分,以此类推。 根据题意,构造比赛得分矩阵的方法如下: 1. 田忌用最快的马与齐王用最慢的马比赛,得分为1; 2. 田忌用第二快的马与齐王用第二慢的马比赛,得分为1; 3. 田忌用最慢的马与齐王用最快的马比赛,得分为0或-1。 注意,第三种情况得分为0或-1,是因为如果田忌用最慢的马与齐王用最快的马比赛,那么田忌必,得分为-1;如果田忌用最慢的马与齐王用次慢的马比赛,那么田忌可能,得分为0或1。 根据上述方法可以构造比赛得分矩阵,然后使用线性规划的方法求解矩阵博弈问题。具体来说,可以将田忌和齐王的得分视为两个向量,将比赛得分矩阵视为一个矩阵,然后使用线性规划求解最大值问题。 以下是Matlab程序实现: ```matlab % 田忌赛马问题的矩阵博弈求解 n = 5; % 马匹数量 speeds = randperm(10, n); % 马的速度,随机生成 score_mat = zeros(n, n); % 得分矩阵 for i = 1:n for j = 1:n if i == j % 同一匹马不能比赛 continue; end if speeds(i) > speeds(j) % 田忌胜 score_mat(i, j) = 1; else % 田忌败 score_mat(i, j) = -1; end end end f = -ones(n, 1); % 目标函数 A = score_mat'; % 约束条件矩阵 b = ones(n, 1); % 约束条件向量 lb = zeros(n, 1); % 变量下界 ub = ones(n, 1); % 变量上界 options = optimset('Display', 'off'); % 不显示求解过程 x = linprog(f, A, b, [], [], lb, ub, options); % 求解线性规划问题 max_score = -sum(x); % 最大得分 disp(['田忌最多能得' num2str(max_score) '分']); ``` 该程序首先随机生成马的速度,然后根据上述方法构造比赛得分矩阵,最后使用Matlab内置函数linprog求解线性规划问题,得到田忌最多能得多少分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值