序
🔥 毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。
为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是:常导/超导磁悬浮演示试验装置的控制
第一章常导磁悬浮的物理模型
在常导磁悬浮中,应用最为广泛,也最为人所知的也就是磁悬浮列车了。所以在以下的常导磁悬浮研究部分,我就以最常见的常导吸力式磁悬浮列车做为模型,研究和分析磁悬浮的控制原理和方法。
1.1 常导磁悬浮列车的物理模型
悬浮技术是低速磁浮的关键技术之一,悬浮能力的大小直接决定了客运能力,而悬浮能力则取决于悬浮系统的设计。从日本对低速磁浮的研究文献中,得到了悬浮磁铁和轨道的近似模型,如图1-1所示
1.励磁线圈;2.磁极铁芯;3.轨道铁芯;4.感应导体板
图2-1 悬浮系统的近似物理模型
悬浮系统的基本原理就是利用电磁铁对铁磁物质有吸引作用这一性质,通过对励磁线圈通电励磁在磁极铁芯跟轨道之间产生悬浮力。
1.1.3 磁浮列车的驱动原理
磁悬浮与线性驱动是磁浮列车两大技术特点,现在从驱动角度来分析选型。用线性电机取代轮轨机车中的旋转电机,纵向(列车运行方向)牵引力不受轮轨黏着力限制,这决定了磁浮列车具有牵引力大、爬坡能力强、起动快和速度高等一系列优点。
磁浮列车采用的线性电机有两种不同型式,它们的主要技术特征见下表。
长定子线性同步电机驱动
德国TR和日本MLU磁浮列车都采用长定子线性同步电机驱动,即电机定子三相交流绕组是铺设在地面线路两侧,动力电源VVVF(变频变压变流器系统)也是在地面变电所内,列车运行控制要在地面运行控制中心完成,对同步电机的同步控制精度也很高,需要对列车的速度和位置进行精确测控,目前国内还没有这方面的技术。长定子方案,由于沿线铺设电机定子绕组,其造价必然很高。采用地面同步电机控制优点是功率大,功率因数高,适用于高速磁浮列车。
图1-2示意地表示了德国TR型磁浮列车长定子线性电机从传统旋转电机展开,设于地面定子铁心槽内的情况。
图1-2 长定子同步电机示意图
短定子线性异步电机驱动
日本HSST磁浮列车采用短定子线性异步电机,线性异步电机定子三相绕组布置在车上两侧,而异步电机转子结构简单,由4mm 左右的铝板铺设在线路与车上定子位置相应的两侧。所以,短定子磁浮线路的造价远低于长定子磁浮线路。由于电机绕组在车上,所以动力电源(VVVF)也必须装在车内,从地面供电轨(DC1500V)
取得电能,地面与磁浮列车之间必须安装受流器。所以严格地说,这种短定子直线电机磁浮列车不是完全无机械接触的。有受流器这点就决定了这种磁浮列车不能用于很高速度,因为高速时受流性能恶化,从目前的技术水平来说,超过200km/h 的受流性能很难保证。
从运行控制方面来说,短定子磁浮列车控制是在车上完成的,相对比较容易。但是,对磁浮列车线性异步电机控制时,必须使线性异步电机的法向力(垂向力)的影响降至最小。
线性异步电机牵引力Fx和法向力Fz与滑差频率Fz的关系曲线见图B。该图表明,法向力Fz的极性在Fo前后是变化的,在F≤Fo时,Fz表现为斥力;在F≥Fo时,则表现为吸力,这种变化对磁浮系统来说是有害的。因为设计磁悬浮系统时,除了要克服车辆重力以及在运动中所产生的动力作用外,还必须考虑这种由电机产生的法向干扰力,而且电机的法向力很大,它和电机牵引力有同样的数量级。为了避免这种干扰力,在设计电机和控制系统时,必须使磁浮列车电机工作在频率Fo附近,即Fz≈0。这就要求对磁浮列车的速度进行精确测量,而直线运动速度精确测量是项专门技术。
图1-3 直线电机法向力与滑频的关系
1.1.4 参数
图2-1所示物理模型的基本参数:单个励磁线圈得匝数N为360;单个气隙长度D为10;磁极宽度p为28;磁极长度l为1250。
ANSYS磁场分析
ANSYS是一个有限元分析软件,能够用于力学、热学、流体、电磁场等场域的分析,本文中主要是在二维电磁场中分析受力关系。
磁极无侧向偏移时的磁场分析
根据图1-1所示的物理模型以及给定的参数,建立有限元分析模型,给励磁线圈加上10080A的电流,可以获得图1-4所示的磁力线分布图以及图1-5所示的气隙磁通密度曲线。
1.1.5 悬浮力损失的原因分析
(1)磁极侧向偏移
在运行过程中,由于受空气阻力的影响,列车会产生侧向的摆动,这就使得悬浮磁极和导轨之间产生侧向偏移。在励磁线圈安匝数保持不变的情况下,悬浮力大小随着侧移而下降。与此同时,侧移后磁极和导轨之间产生导向力,将磁极拉回到中心位置。表1-1给出了磁极极面宽度为28,线圈励磁电流为10080A时,由于磁极侧移引起的悬浮力和导向力的变化。
(2)列车通过弯道
当列车通过弯道的时候,由于磁铁模块不能弯曲,所以就会出现磁极极面跟导轨极面不重合的现象。这种不重合可以近似认为是磁极的侧移。同上所述,这种情况下也会产生悬浮力的损失。图2-6给出了列车通过弯道时磁极和导轨的相对位置示意图(图中只画了一个极),其中矩形表示的是磁极模块,断裂环形表示的是导轨极面,阴影部分表示两者不重合的区域。图中的基本参数如下:导轨极面宽度p1=28;磁极极面宽度p2=28;磁极模块长度l=2.4。
1.1.6 悬浮力的补偿
(1) 磁极铁芯和导轨的极面同时加宽
图2-7和图2-8给出了相同的励磁安匝数下,在磁极宽度分别为28mm、32mm、36mm时,由于磁极侧向偏移导致的悬浮力和导向力变化。从图中可以得知,要保持极宽28mm且无侧移时的悬浮力,当磁极宽度为32mm时,侧移量可达30%,而磁极宽度为36mm时,偏移量可达40%。也就是说,在增加磁极宽度的情况下,无需增加励磁就可以大大改善悬浮力。与此同时,磁极加宽使得导向力也有所增加,只是幅度不是很大。
(2) 加宽导轨内侧极面
由于磁极铁芯和导轨极面的同时加宽会大量增加成本,在这种情况下只考虑增加导轨内侧极面的宽度。通过分析,得到的结果如图1-9和图1-10。从图中可以看出,单侧极面柱宽度每增加14%(4/28),在磁极侧移时,悬浮力的增加约为300N·m(约为无侧移时的2.9%)的定值,而导向力则几乎保持不变,总的效果不是十分明显
第二章 超导磁悬浮的物理模型
2. 1 超导体基本现象
在19世纪末液化气体的实验技术获得了显著进展,曾一度被视为“永久气体”的空气1895年被液化了,l 898年杜瓦(Dewar)第一次把氢气变成液体氢,液化点为20K。在利用液体空气和液氢的基础上,当时在实验中已能实现14K的低温。1908年,荷兰莱登实验室在昂尼斯的指导下,经过长期努力后实现了氮气的液化。当时,他们测定在一个大气压下氦的液化点是4.25K,使莱登实验室获得了当时所能达到的最低温度。
很久以来人们已经知道,金属的电阻率随温度的降低而减小,所以昂尼斯决定研究一下在他们所达到的新低温区内金属电阻变化的规律。昂尼斯根据杜瓦的经验预期,随着温度的降低,电阻率会平缓地趋于零。然而,对金属铂所作的实验却发现,铂的电阻趋于不为零的剩余电阻值,比值与铂中所合的杂质量有关。由于利用真空蒸馏易于得到纯汞,他们使进一少选择汞作实验,结果发现:在4.2K附近汞的电阻确实为零。然而出乎意料的是,当温度下降时,汞的电阻先是平缓地减小,而在4.2K附近电阻突然降为零。图2—1的横坐标是湿度,纵坐标是该温度下汞的电阻与摄氏零度时汞的电阻之比。由图可见,在4.2K附近,汞的电阻比由大约为1/500下降到小于百万分之一。图中标出了电阻的突变。 昂尼斯指出:在42K以下汞进入了一个新的物态,在这新物态中汞的电阻实际上为零。他把这种显示出超导电性质的物质状态定名为超导态。此后,他们又发现其它许多金属也有超导电现象,例如,铝约在3.8K开始变为超导态。
我们用超导体一词表示当冷却到一定湿度以下时能表现出超导电性的材料。
图2-1 在超导转变温度附近汞电阻随温度的变化
当超导体显示超导电性时,就说它处于超导态,否则说它处于正常态。现在我们知道,有些在正常态时具有很大电阻率的不纯的金属是超导体,而铂、铜、金、银等在直到目前所能达到的最低温度下尚未表现出是超导体。
我们称超导体开始失去电阻时的温度为超导转变温度或临界温度,以T c表示。 测量超导转交温度主要有电测法和磁测法两种。磁测法是利用超导体的磁性质来测,电测法是利用零电阻效应。将恒定电流通入被测样品,把灵敏伏特计连到样品两端,通过测量电压来测量电阻,根据样品电阻下降为零,可测定Tc。实际上,由正常态向超导态的过汲是在一个温度间隔内完成的,我们称这个温度间隔为转变宽度。转变宽度因材料性质不同而不同。
图2—2表示锡的转变,由线1、2、3分别表示纯锡单品、纯锡多品及不纯的锡多品从正常态过渡到超导态时电阻的变化的情况。可以看出,经过充分退火的单晶样品,其转变宽度很小,但在多星体或合有机械应变和杂质的样品小,转变宽度增大。通常把样品电阻下降到正常态电阻值一半时所处的温度定为Tc。
图2-2 超导转变温度的宽度随样品的性质不同而不同
设计电路图
整体图
如果学弟学妹们在毕设方面有任何问题,随时可以私信我咨询哦,有问必答!学长专注于单片机相关的知识,可以解决单片机设计、嵌入式系统、编程和硬件等方面的难题。
愿毕业生有力,陪迷茫着前行!