常用排序算法总结+源代码

排序

  • 稳定性:排序前后具有相同关键字的记录的相对顺序不发生改变,则该排序算法是稳定的
  • 适用性:排序算法适用于顺序存储结构还是链式存储结构

1.选择排序

  • 首先,找到数组中最小的那个元素,其次,将它和数组的第一个元素交换位置(如果第一个元素就是最小的元素那么它就和自己交换)。再次,在剩下的元素中找到最小的元素,将它于数组的第二个元素交换位置。如此往复,直到整个数组排序。
  • 对于长度为N的数组,选择排序需要大约n(n-1)/2次比较和n次交换
  • 时间复杂度与初始顺序无关
平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度稳定性
O(n^2)O(n^2)O(n^2)O(1)不稳定
public class Selection {
    public static void sort(Comparable[] a){
        int N = a.length;
        for(int i=0;i<N;i++){
            int min = i;
            for(int j=i+1;j<N;j++){
                if(less(a[j],a[min])) min=j;
            }
            exch(a,i,min);
        }
    }
}

2.插入排序

  • 一个一个元素的来,将每一个元素插入到其他已经有序的元素中的适当位置。
  • 对于随机排列的长度为N的主键不重复的数组,平均情况下插入排序需要n(n-1)/4次比较和n(n-1)/4交换
  • 时间复杂度与初始顺序有关
平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度稳定性
O(n^2)O(n)O(n^2)O(1)稳定
public class Insertion{
	public static void sort(Comparable[] a){
		int N = a.length;
		for(int i=1;i<n;i++){
			for(int j=i;j>0&&less(a[j],a[j-1]);j--){
				exch(a,j,j-1);
			}
		}
	}
}

3.希尔排序

  • 插入排序的改进,交换不相邻的元素以对数组的局部进行排序,并最终用插入排序将局部有序的数组排序
  • 时间复杂度与初始顺序有关
平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度稳定性
O(n^1.3)O(n)O(n^2)O(1)不稳定
public class Shell{
	public static void sort(Comparable[] a){
		int N = a.length;
		int h = 1;
		while(h<N/3) h=h*3+1;
		while(h>=1){
			for(int i=h;i<N;i++){
				for(int j=i;j>=h&&less(a[j],a[j-h]);j-=h){
					exch(a,j,j-h);
				}
			}
			h/=3;
		}
	}
}

4.冒泡排序

  • 对元素依次进行两两比较,将较大的元素放后面,这样每次循环都能将一个较大的元素放在数组最后,经历n-1次循环数组变为有序状态
  • 对于一个长度为N的数组,平均情况下冒泡排序需要进行n(n-1)/2次比较和n(n-1)/4次交换
  • 时间复杂度与初始排序有关
平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度稳定性
O(n^2)O(n)O(n^2)O(1)稳定
public class Bubble{
	public static void sort(Comparable[] a){
		int N = a.length;
		boolean flag = false;
		for(int i=0;i<N;i++){
			for(int j=0;j<N-1-i;j++){
				if(less(a[j+1],a[j])){exch(a,j,j+1);flag=true;}
			}
			if(!flag) break;
			flag = false;
		}
	}
}

5.归并排序

  • 采用分治法,先使每个子序列有序,再使子序列段间有序
  • 对于一个长度为N的数组,平均情况下归并排序需要进行(nlog2n)/2次比较
  • 时间复杂度与初始排序无关
平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度稳定性
O(nlog2n)O(nlog2n)O(nlog2n)O(n)稳定
public class Merge{
	private static Comparable[] aux;
	public static void sort(Comparable[] a){
		aux = new Comparable[a.length];
		sort(a,0,a.length-1);
	}
	private static void sort(Comparable[] a,int lo,int hi){
		if(lo>=hi) return;
		int mid = (lo+hi)/2;
		sort(a,lo,mid);
		sort(a,mid+1,hi);
		merge(a,lo,mid,hi);
	}
	private static void merge(Comparable[] a,int lo,int mid,int hi){
		for(int i=lo;i<=hi;i++){aux[i]=a[i];}
		int i,j,k;
		for(k=lo,i=lo,j=mid+1;i<=mid&&j<=hi;){
			if(lessOrEqual(aux[i],aux[j])) a[k++]=aux[i++];
			else a[k++]=aux[j++];
		}
		while(i<=mid){a[k++]=aux[i++];}
		while(j<=hi){a[k++]=aux[j++];}
	}
	private static boolean lessOrEqual(Comparable v,Comparable w){return v.compareTo(w)<=0;}
}

6.快速排序

  • 采用分治法,将一个数组分成两个子数组,将两部分独立地排序,重复上述步骤
  • 对于一个长度为N的数组,平均情况下快速排序需要进行nlog2n次比较
  • 时间复杂度与初始排序有关
平均时间复杂度最好时间复杂度最坏时间复杂度最好空间复杂度最坏空间复杂度稳定性
O(nlog2n)O(nlog2n)O(n^2)O(log2n)O(n)不稳定
public class Quick{
    public static void sort(Comparable[] a,int lo,int hi){
        if(lo>=hi) return;
        int j = partition(a,lo,hi);
        sort(a,lo,j-1);
        sort(a,j+1,hi);
    }
    private static int partition(Comparable[] a,int lo,int hi){
        int i=lo,j=hi+1;
        Comparable stan = a[lo];
        while(true){
            while(less(a[++i],stan)) if(i>=hi) break;
            while(less(stan,a[--j])) if(j<=lo) break;
            if(i>=j) break;
            exch(a,i,j);
        }
        exch(a,j,lo);
        return j;
    }
    private static boolean less(Comparable v,Comparable w){return v.compareTo(w)<0;}
    private static void exch(Comparable[] a,int i,int j){Comparable temp=a[i];a[i]=a[j];a[j]=temp;}
}

7.堆排序

  • 将待排序列组成一个大顶堆,不断将根节点与最后一个节点交换然后重新排序,就能得到有序序列
  • 时间复杂度与初始排序无关
平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度稳定性
O(nlog2n)O(nlog2n)O(nlog2n)O(1)不稳定
public class Heap {
    public static void sort(Comparable[] a){
        int N = a.length;
        for(int i=N/2-1;i>=0;i--){sink(a,i,N);}
        for(int j=N-1;j>0;j--){
            exch(a,j,0);
            sink(a,0,j);
        }
    }
    private static void sink(Comparable[] a,int i,int N){
        Comparable temp = a[i];
        for(int k=i*2+1;k<N;k=k*2+1){
            if(k+1<N-1&&less(a[k],a[k+1])) k++;
            if(less(temp,a[k])){exch(a,i,k);i=k;}
            else break;
        }
        a[i] = temp;
    }
    private static void exch(Comparable[] a,int i,int j){Comparable temp=a[i];a[i]=a[j];a[j]=temp;}
    private static boolean less(Comparable v,Comparable w){return v.compareTo(w)<0;}
}

8.基数排序

  • 稳定性:稳定
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值