1045 快速排序 (25分)
著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定
N
=
5
N = 5
N=5, 排列是1、3、2、4、5。则:
- 1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
- 尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
- 尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
- 类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤105); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
很有意思的一道题,看似简单,实际用一般的暴力方法一定会超时。
其实,该题只要比较该元素是否排完序后的该元素在同一位置(a[i]==b[i]),并且大于之前的所有元素(a[i]>max)即可。
样例解答(java):
不过java依旧会超时啊哈哈。
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws Exception{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
String[] s = sc.nextLine().split(" ");
int[] a = new int[n];
int[] b = new int[n];
int[] sum = new int[n];
int num=0,max=0;
for(int i=0;i<n;i++) {
a[i]=Integer.parseInt(s[i]);
b[i]=a[i];
}
Arrays.sort(b);
for(int i=0;i<n;i++) {
if(a[i]==b[i]&&a[i]>max) {
sum[num++]=a[i];
}
if(a[i]>max) {
max=a[i];
}
}
System.out.println(num);
for(int i=0;i<num;i++) {
System.out.print(sum[i]);
if(i!=num-1) System.out.print(" ");
}
}
}
样例解答(c++):
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin>>n;
int a[n],b[n],sum[n],max=0,num=0;
for(int i=0;i<n;i++) {
cin>>a[i];
b[i]=a[i];
}
sort(b,b+n);
for(int i=0;i<n;i++) {
if(a[i]==b[i]&&a[i]>max) {
sum[num++]=a[i];
}
if(a[i]>max) {
max=a[i];
}
}
cout<<num<<endl;
for(int i=0;i<num;i++) {
cout<<sum[i];
if(i!=num-1) cout<<" ";
}
//结束时要换行,不然第二个点过不去
cout<<endl;
}