经典的分配问题12态

提示:图片种每盒至少一球下面的范围有错误,懒得改了= =




1、【N个全不同的球放入K个全不同的盒子 ——无限制】

每个球都有k种选择方案,所以根据乘法原理,方案数就是k^n



2、【N个全不同的球放入K个全不同的盒子——每盒至多1球(n<=k)】

盒子:□□□□□□□□□□□□□□□□□□

球:●●●●●●

从盒子集合里面有序地取出k个盒子(一共有P(k,n)种方案),将球依次放入。

所以一共是P(k,n)种方案。



3、【N个全不同的球放入K个全不同的盒子——每盒至少1球(n>=k)】

盒子:□□□□□□□

球:●●●●●●●●●●●●●●●●●●

先简化为第二类stirling:

#n个元素划分k个集合,每个集合至少一数#

#将n个不同的小球全部放入k个相同的盒子,要求每个盒子都不为空。#

该问题的解S(n,k)=S(n-1,k-1)+k*S(n-1,k);(S(n,n)=1,S(n,1)=1)

然后考虑盒子有顺序,即乘上k的全排列的方案数k!
所以最终问题的解为k!S(n,k)。

4、【N个全同的球放入K个全不同的盒子 ——无限制】
该问题可以转化为:
有k类元素,每类可以取无限个,总共取n个数,有多少种方案
{●||●●●|●●|●●●●|●||}
可以看出,就是在一串球里面放k-1个栅栏所得的方案数,可以放栅栏的总位置为n-1个,得出为C(n-1,k-1)。


{●|   |●●●|●●|●●●●|●|  |}
因为无限制,即有可能为空(图见上),所以n很可能会小于k,所以这时候C(n-1,k-1)就不合法了。
接下来想到一个办法,设每两个栅栏之间早就有一个球了,于是示意图变成了:
{●[●]|[●]|●●●[●]|●●[●]|●●●●[●]|●[●]|[●]|}
注:[●]为想象中多加进去的球

这样一来和加球之前方案数一定一样。
所以总方案数=C(n-1+k,k-1)=C(n+k-1,k-1)=C(n+k-1,n)。


5、【N个全同的球放入K个全不同的盒子 ——每盒至多一球(n<=k)】

盒子:□□□□□□□□□□□□□□□□□□□□□

球:●●●●●●●●●●

从k个盒子里无序取出n个盒子然后依次放入n个球,方案数为C(k,n)

6、【N个全同的球放入K个全不同的盒子 ——每盒至少一球(n>=k)】
该问题与4号问题有异曲同工之妙,因为无限制的隐含条件即为每盒至少0个球,现在变成了每盒至少1个球。
参照4号问题里面首先列举的放k-1个栅栏,共有n-1个放栅栏的位置,所以总方案数=C(n-1,k-1)。

7、【N个全不同的球放入K个全同的盒子 ——无限制】
在3号问题里面已经介绍了第二类stirling数S(n,k),即n个元素划分k个集合,每个集合至少一数。
假设把球全部放入一个盒子里,方案为S(n,1),然后把球全部放入两个盒子里,方案为S(n,2)……把球全部放入k个盒子里,方案为S(n,k)
该问题方案总数即为∑S(n,i)。

8、【N个全不同的球放入K个全同的盒子 ——每盒至多一球(n<=k)】
仅有1种方案。


9、【N个全不同的球放入K个全同的盒子 ——每盒至少一球(n>=k)】
解即为第二类stirling数S(n,k)。


10、【N个全同的球放入K个全同的盒子 ——无限制】
解为p(n,k)=p(n-1,k-1)+p(n-k,k)。
球:{●|●|●|●|●|●}
因为盒子全部相同没有顺序,可以将其按照内容多少排序得到
球:{●|●●●|●●●|●●●●|●●●●●|●●●●●}

p(n-1,k-1)即考虑将现在的第n个球单独放进一个盒子里面。

该柱状图高度表示该位置目前放了多少个小球,可以看出,因为方块相同,所以不论怎么变换组合,都不与下面四行有关


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值