提示:图片种每盒至少一球下面的范围有错误,懒得改了= =
1、【N个全不同的球放入K个全不同的盒子 ——无限制】
每个球都有k种选择方案,所以根据乘法原理,方案数就是k^n。
2、【N个全不同的球放入K个全不同的盒子——每盒至多1球(n<=k)】
盒子:□□□□□□□□□□□□□□□□□□
球:●●●●●●
从盒子集合里面有序地取出k个盒子(一共有P(k,n)种方案),将球依次放入。
所以一共是P(k,n)种方案。
3、【N个全不同的球放入K个全不同的盒子——每盒至少1球(n>=k)】
盒子:□□□□□□□
球:●●●●●●●●●●●●●●●●●●
先简化为第二类stirling:
#n个元素划分k个集合,每个集合至少一数#
即
#将n个不同的小球全部放入k个相同的盒子,要求每个盒子都不为空。#
该问题的解S(n,k)=S(n-1,k-1)+k*S(n-1,k);(S(n,n)=1,S(n,1)=1)
然后考虑盒子有顺序,即乘上k的全排列的方案数k!
所以最终问题的解为k!S(n,k)。
4、【N个全同的球放入K个全不同的盒子 ——无限制】
该问题可以转化为:
有k类元素,每类可以取无限个,总共取n个数,有多少种方案
{●|●|●●●|●●|●●●●|●|●|}
可以看出,就是在一串球里面放k-1个栅栏所得的方案数,可以放栅栏的总位置为n-1个,得出为C(n-1,k-1)。
{●| |●●●|●●|●●●●|●| |}
因为无限制,即有可能为空(图见上),所以n很可能会小于k,所以这时候C(n-1,k-1)就不合法了。
接下来想到一个办法,设每两个栅栏之间早就有一个球了,于是示意图变成了:
{●[●]|[●]|●●●[●]|●●[●]|●●●●[●]|●[●]|[●]|}注:[●]为想象中多加进去的球
这样一来和加球之前方案数一定一样。
所以总方案数=C(n-1+k,k-1)=C(n+k-1,k-1)=C(n+k-1,n)。
5、【N个全同的球放入K个全不同的盒子 ——每盒至多一球(n<=k)】盒子:□□□□□□□□□□□□□□□□□□□□□
球:●●●●●●●●●●●
从k个盒子里无序取出n个盒子然后依次放入n个球,方案数为C(k,n)。
该问题与4号问题有异曲同工之妙,因为无限制的隐含条件即为每盒至少0个球,现在变成了每盒至少1个球。6、【N个全同的球放入K个全不同的盒子 ——每盒至少一球(n>=k)】
参照4号问题里面首先列举的放k-1个栅栏,共有n-1个放栅栏的位置,所以总方案数=C(n-1,k-1)。
7、【N个全不同的球放入K个全同的盒子 ——无限制】
在3号问题里面已经介绍了第二类stirling数S(n,k),即n个元素划分k个集合,每个集合至少一数。
假设把球全部放入一个盒子里,方案为S(n,1),然后把球全部放入两个盒子里,方案为S(n,2)……把球全部放入k个盒子里,方案为S(n,k)
该问题方案总数即为∑S(n,i)。
8、【N个全不同的球放入K个全同的盒子 ——每盒至多一球(n<=k)】
仅有1种方案。
9、【N个全不同的球放入K个全同的盒子 ——每盒至少一球(n>=k)】
解即为第二类stirling数S(n,k)。
10、【N个全同的球放入K个全同的盒子 ——无限制】
解为p(n,k)=p(n-1,k-1)+p(n-k,k)。
球:{●|●●●|●●●●●|●●●|●●●●●|●●●●}
因为盒子全部相同没有顺序,可以将其按照内容多少排序得到
球:{●|●●●|●●●|●●●●|●●●●●|●●●●●}p(n-1,k-1)即考虑将现在的第n个球单独放进一个盒子里面。该柱状图高度表示该位置目前放了多少个小球,可以看出,因为方块相同,所以不论怎么变换组合,都不与下面四行有关