排列组合基本性质

定义

排列

n n n不同的元素中,任取 m m m 个元素按照一定的顺序构成一个序列的方案数,叫做从 n n n 个元素中取出 m m m 个元素的排列数

排列数记为 A ( n , m ) A(n,m) A(n,m) A n m A_{n}^{m} Anm

组合

n n n不同的元素中,任取 m m m 个元素无序构成一个集合的方案数,叫做从 n n n 个元素中取出 m m m 个元素的组合数

组合数记为 C ( n , m ) C(n,m) C(n,m) C n m C_{n}^{m} Cnm,最常用的是 ( n m ) n\choose m (mn)

计算公式

A n m = n × ( n − 1 ) × ( n − 2 ) × ( n − m + 1 ) = ∏ i = n − m + 1 n i = n ! ( n − m ) ! ( n m ) = A n m A m m = n ! ( n − m ) ! m ! = n ! m !   ( n − m ) ! A_{n}^{m}=n\times (n-1)\times (n-2)\times (n-m+1)=\prod_{i=n-m+1}^{n}{i}=\dfrac{n!}{(n-m)!}\\ {n\choose m}=\dfrac{A_{n}^{m}}{A_{m}^{m}}=\dfrac{\dfrac{n!}{(n-m)!}}{m!}=\dfrac{n!}{m!\,(n-m)!} Anm=n×(n1)×(n2)×(nm+1)=i=nm+1ni=(nm)!n!(mn)=AmmAnm=m!(nm)!n!=m!(nm)!n!

常见公式

( n m ) = ( n n − m ) {n\choose m}={n\choose n-m} (mn)=(nmn)

数学证明

( n m ) = n ! m !   ( n − m ) ! = n ! ( n − m ) !   m ! = ( n n − m ) {n\choose m}=\dfrac{n!}{m!\,(n-m)!}=\dfrac{n!}{(n-m)!\,m!}={n\choose n-m} (mn)=m!(nm)!n!=(nm)!m!n!=(nmn)

组合意义证明

n n n 个人中选取 m m m 个人留下,等同于 n n n 个人中选取 n − m n-m nm 个人让他们离开。


( n m ) = ( n − 1 m ) + ( n − 1 m − 1 ) {n\choose m}={n-1\choose m}+{n-1\choose m-1} (mn)=(mn1)+(m1n1)

数学证明

( n − 1 m ) + ( n − 1 m − 1 ) = ( n − 1 ) ! m !   ( n − m − 1 ) ! + ( n − 1 ) ! ( m − 1 ) !   ( n − m ) ! = ( n − 1 ) !   ( n − m ) m !   ( n − m ) ! + ( n − 1 ) !   m m !   ( n − m ) ! = ( n − m n + m n ) n ! m !   ( n − m ) ! = ( n m ) \begin{aligned} {n-1\choose m}+{n-1\choose m-1}&=\dfrac{(n-1)!}{m!\,(n-m-1)!}+\dfrac{(n-1)!}{(m-1)!\,(n-m)!}\\ &=\dfrac{(n-1)!\,(n-m)}{m!\,(n-m)!}+\dfrac{(n-1)!\,m}{m!\,(n-m)!}\\ &=\left(\dfrac{n-m}{n}+\dfrac{m}{n}\right)\dfrac{n!}{m!\,(n-m)!}\\ &={n\choose m} \end{aligned} (mn1)+(m1n1)=m!(nm1)!(n1)!+(m1)!(nm)!(n1)!=m!(nm)!(n1)!(nm)+m!(nm)!(n1)!m=(nnm+nm)m!(nm)!n!=(mn)

组合意义证明

n n n 个人中选取 m m m 个人留下,可以分两类讨论:

  • n n n 个人被选中了:此时还要从剩下的 n − 1 n-1 n1 人中选取 m − 1 m-1 m1 个人,故方案数为 ( n − 1 m − 1 ) {n-1\choose m-1} (m1n1)
  • n n n 个人没被选中:此时还要从剩下的 n − 1 n-1 n1 人中选取 m m m 个人,故方案数为 ( n − 1 m ) {n-1\choose m} (mn1)

综上,总方案数 ( n m ) = ( n − 1 m − 1 ) + ( n − 1 m ) {n\choose m}={n-1\choose m-1}+{n-1\choose m} (mn)=(m1n1)+(mn1)


∑ i = 0 n ( n i ) = 2 n \sum\limits_{i=0}^{n}{n\choose i}=2^{n} i=0n(in)=2n

证明

考虑从 n n n 个人中选出任意个留下(可以不选),询问有多少种方案。

  • 对于每个人考虑,每个人有留下或者不留下两种情况,所以总方案数为 2 n 2^n 2n
  • 对于选的人考虑,枚举选出的人数 i ∈ [ 0 , n ] i\in[0,n] i[0,n],总情况数就是 ∑ i = 0 n ( n i ) \sum_{i=0}^{n}{n\choose i} i=0n(in)

综上, 可得 ∑ i = 0 n ( n i ) = 2 n \sum_{i=0}^{n}{n\choose i}=2^n i=0n(in)=2n


二项式定理
( x + y ) n = ∑ i = 0 n ( n i ) x i y n − i (x+y)^{n}=\sum\limits_{i=0}^{n}{n\choose i}x^{i}y^{n-i} (x+y)n=i=0n(in)xiyni

证明

式子的含义是对于 ∀   i ∈ [ 0 , n ] \forall\,i\in[0,n] i[0,n],求 x i y n − i x^iy^{n-i} xiyni 的系数。

这相当于从 n n n 个物品中选 i i i 个给 x x x,选 n − i n-i ni 个给 y y y 的方案数,所以其系数为 ( n i ) {n\choose i} (in)

由于该式子的存在,组合数也常被成为二项式系数

应用

用二项式定理求证 ∑ i = 0 n ( n i ) = 2 n \sum_{i=0}^{n}{n\choose i}=2^{n} i=0n(in)=2n

证明:
2 n = ( 1 + 1 ) n = ∑ i = 0 n ( n i ) 1 i 1 n − i = ∑ i = 0 n ( n i ) \begin{aligned} 2^n&=(1+1)^n\\ &=\sum\limits_{i=0}^{n}{n\choose i}1^i1^{n-i}\\ &=\sum\limits_{i=0}^{n}{n\choose i} \end{aligned} 2n=(1+1)n=i=0n(in)1i1ni=i=0n(in)


∑ i = 0 n ( n i ) ( − 1 ) i = 0 \sum\limits_{i=0}^{n}{n\choose i}(-1)^i=0 i=0n(in)(1)i=0

证明

0 = ( − 1 + 1 ) n = ∑ i = 0 n ( n i ) ( − 1 ) i 1 n − i = ∑ i = 0 n ( n i ) ( − 1 ) i \begin{aligned} 0&=(-1+1)^n\\ &=\sum\limits_{i=0}^{n}{n\choose i}(-1)^i 1^{n-i}\\ &=\sum\limits_{i=0}^{n}{n\choose i}(-1)^i \end{aligned} 0=(1+1)n=i=0n(in)(1)i1ni=i=0n(in)(1)i

应用

该公式提醒我们,在杨辉三角内,对于同一行的组合数,奇数位置的和与偶数位置的和相等。


∑ 2   ∣   i ( n i ) = ∑ 2   ∤   i ( n i ) \sum\limits_{2\,\mid\,i}{n\choose i}=\sum\limits_{2\,\nmid\,i}{n\choose i} 2i(in)=2i(in)

公式集合

{ ( n m ) = ( n n − m ) ( n m ) = ( n − 1 m ) + ( n − 1 m − 1 ) ∑ i = 0 n ( n i ) = 2 n ( x + y ) n = ∑ i = 0 n ( n i ) x i y n − i ∑ i = 0 n ( n i ) ( − 1 ) i = 0 \begin{cases} {n\choose m}={n\choose n-m}\\ {n\choose m}={n-1\choose m}+{n-1\choose m-1}\\ \sum\limits_{i=0}^{n}{n\choose i}=2^{n}\\ (x+y)^{n}=\sum\limits_{i=0}^{n}{n\choose i}x^{i}y^{n-i}\\ \sum\limits_{i=0}^{n}{n\choose i}(-1)^i=0\\ \end{cases} (mn)=(nmn)(mn)=(mn1)+(m1n1)i=0n(in)=2n(x+y)n=i=0n(in)xiynii=0n(in)(1)i=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值