在古典概型中, 计算事件的概率经常用到排列组合及其总数计算公式, 在此给出排列组合的定义及其相关公式。
一. 两个基本原理
1. 乘法原理
如果某件事需经 k 步才以完成, 做第一步有 m₁种方法, 做第二步有 m₂ 种方法,... 做第 k 步有 种方法, 那么完成这件事共有
种方法。
2. 加法原理
如果某件事可由 k 类 不同途径之一去完成, 在第一类途径中有 m₁ 种完成方法, 在第二类途径中 有 m₂ 种完成方法, ... 在第 k 类途径中有 种完成方法, 那么完成这件事共有
种方法。
排列和组合的公式都基于以上两个基本原理。
二. 排列
1. 定义
当 r = n时,称为全排列, 排列总数为
2. 可重复排列
从n个不同元素中每次取出一个, 放回后再取一个,如此连续取 r 次所得的排列称为 可重复排列, 此种排列总数共有 个, 注意, 这里的r允许大于n.
例题: 用 1,2,3,4,5这5个数字可以组成多少个三位数?
解: 组成的三位数是可重复, 属于可重复排列问题, 个数为 5³ = 125.
三. 组合
1. 定义
数学中规定, 0!=1,
看例题: 有10个球队进行单循环比赛, 问需要安排多少场比赛?
解: 这是从10个球队中任选 2 个进行组合的问题, 选法总数为
即需安排 45 场比赛。
2. 性质
,
四 使用组合容易出现的错误
我们在是否使用组合时, 容易出现一种错误, 即想当然 “用不到组合”
看一个例子: 一个盒子中有4个白球, 2个黑球, 从盒子任取2个球, 问取到黑球的概率是多少?
这个题目, 有的人一看, 就想当然地认为, 6个中取2个,概率为 , 这么简单...
我们不禁有疑问, 是这样吗?1/3对吗?? 这好像是黑球的组成比例, 不是任取2个球时都是黑球的概率。
实际上,任取2个球的取法有 = 15种, 从盒中取2个黑球的取法有
= 1种 ,概率为
, 也就是说,取到2个黑球的概率 远小于1/3, 因为任取的取法是很多的!!!
五 例题讲解
光说不练是假把式,接下来看几个例题
1 将C,C, E,E, I,N, S 7个字母随机排成一行, 那么恰好排成英文单词 SCIENCE的概率为______.
解析:随机将上述7个字母排成一行的数量为全排列 n=7!,
按照单词SCIENCE来排列, 要注意不是一种, 不是一种! 因为C, E是可以调整顺序的。
顺序为 ,
所以 P= 4/ 7! = 1/1260.