各类算法优缺点

1决策树(Decision Trees)的优缺点

决策树的优点:

1.决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。
2. 对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。
3. 能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。
4.决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。
5.易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。
6.在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
7.可以对有许多属性的数据集构造决策树。
8.决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。
决策树的缺点:

1.对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。
2. 决策树处理缺失数据时的困难。
3. 过度拟合问题的出现。
4.忽略数据集中属性之间的相关性。



2 人工神经网络的优缺点

人工神经网络的优点:
1. 分类的准确度高,
2. 并行分布处理能力强,
3.分布存储及学习能力强,
4.对噪声神经有较强的鲁棒性和容错能力,
5.能充分逼近复杂的非线性关系,
6.具备联想记忆的功能等。
人工神经网络的缺点:
1.神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;
2.不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;
3.学习时间过长,甚至可能达不到学习的目的。




3 遗传算法的优缺点

遗传算法的优点:
1.与问题领域无关切快速随机的搜索能力。
2.搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。
3.搜索使用评价函数启发,过程简单。
4.使用概率机制进行迭代,具有随机性。
5.具有可扩展性,容易与其他算法结合。
遗传算法的缺点:

1.遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,
2.另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。
3.算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。



4 KNN算法(K-Nearest Neighbour) 的优缺点

KNN算法的优点:
1. 简单、有效。
2.重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。
3.计算时间和空间线性于训练集的规模(在一些场合不算太大)。
4.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
5.该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
KNN算法缺点:
1.KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多。
2.类别评分不是规格化的(不像概率评分)。
3.输出的可解释性不强,例如决策树的可解释性较强。
4.该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
5.计算量较大。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。



5 支持向量机(SVM)的优缺点

SVM的优点:
1.可以解决小样本情况下的机器学习问题。
2.可以提高泛化性能。
3.可以解决高维问题。
4.可以解决非线性问题。
5.可以避免神经网络结构选择和局部极小点问题。

SVM的缺点:
1.对缺失数据敏感。
2.对非线性问题没有通用解决方案,必须谨慎选择Kernelfunction来处理。



6 朴素贝叶斯的优缺点

优点:
1.朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
2.NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。

缺点:
1. 理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的(可以考虑用聚类算法先将相关性较大的属性聚类),这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
2.需要知道先验概率。
3.分类决策存在错误率



7 Adaboosting方法的优点

1.adaboost是一种有很高精度的分类器。
2.可以使用各种方法构建子分类器,Adaboost算法提供的是框架。
3.当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单。
4.简单,不用做特征筛选。
5.不用担心overfitting。


8 Rocchio的优点

Rocchio算法的突出优点是容易实现,计算(训练和分类)特别简单,它通常用来实现衡量分类系统性能的基准系统,而实用的分类系统很少采用这种算法解决具体的分类问题。


Calibrated boosted trees的性能最好,随机森林第二,uncalibrated bagged trees第三,calibratedSVMs第四, uncalibrated neural nets第五。
性能较差的是朴素贝叶斯,决策树。
有些算法在特定的数据集下表现较好。


 

各类排序算法优缺点如下: 1. 冒泡排序 优点:实现简单,只需要一个额外的空间,可以在原地进行排序。 缺点:时间复杂度较高,最坏情况下的时间复杂度为O(n^2),不适用于大规模数据排序。 适用场景:适用于数据规模较小的情况。 2. 快速排序 优点:时间复杂度较低,平均时间复杂度为O(nlogn),实际效率很高。 缺点:可能会出现最坏情况,时间复杂度为O(n^2),需要额外的空间来存储递归栈。 适用场景:适用于大规模数据排序,但需要注意避免最坏情况的发生。 3. 归并排序 优点:时间复杂度较低,最坏情况下的时间复杂度为O(nlogn),稳定性好。 缺点:需要额外的空间来存储临时数组。 适用场景:适用于大规模数据排序,但需要注意空间限制。 4. 插入排序 优点:实现简单,常数因子小,对于部分有序的数据效率较高。 缺点:时间复杂度较高,最坏情况下的时间复杂度为O(n^2)。 适用场景:适用于数据规模较小、部分有序的情况。 5. 希尔排序 优点:时间复杂度较低,比插入排序和冒泡排序快得多。 缺点:不稳定,需要选择合适的增量序列。 适用场景:适用于数据规模较大的情况。 6. 选择排序 优点:实现简单,稳定性好。 缺点:时间复杂度较高,最坏情况下的时间复杂度为O(n^2),不适用于大规模数据排序。 适用场景:适用于数据规模较小的情况。 综上所述,各类排序算法优缺点不同,需要根据具体的场景选择合适的算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值