hdu 3756 Dome of Circus 三分

求 能包围 n个点的 最小体积的圆锥 的 高 和 底面半径。

对于一个点而言,通过分析 体积公式。 求导后,公式是单点的。 所以 体积公式是 先下降 后上升 (推导和分析好一会)。

而对于n个点, Fi (h) 为高为h 时最小体积。

对于 高 h,得到 最小 V  = max(  Fi (h))    i 为 1--n

分析的 n 个 对钩函数 的max 也是对钩函数 (这里对钩函数是 先下降 在上升的函数即可)。

因此对于n个点的最小包围圆锥 的体积 对于 高h 而言就是 一个 先下降在上升。 这样就可以三分。

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <cstring>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <assert.h>
#include <queue>
#define REP(i,n) for(int i=0;i<n;i++)
#define TR(i,x) for(typeof(x.begin()) i=x.begin();i!=x.end();i++)
#define ALLL(x) x.begin(),x.end()
#define SORT(x) sort(ALLL(x))
#define CLEAR(x) memset(x,0,sizeof(x))
#define FILLL(x,c) memset(x,c,sizeof(x))
using namespace std;
const double eps = 1e-9;
#define LL long long 
#define pb push_back
const int maxn = 10100;
const double PI = 3.1415926;
double x[maxn],y[maxn],z[maxn];
int n ;
double f(double a){
    double ret = 0;
    for(int i=1;i<=n;i++){
         double l = sqrt(x[i]*x[i]+y[i]*y[i]);
         double h = z[i];
        
         double r = h*l/(a-h)+l;
        //  cout << l << "  "<< h<< "  "<<r <<endl;
         ret  = max(ret , r);
    }
    return ret;
}
double s(double a){
      double  r = f(a); 
     // cout << a << "  "<< r<<endl;
      return PI*r*r *a/3;
}
double down = 0 ;
void solve(){
    //cout << f(3)<<"fasdfas"<<endl;
      double left = down + 1e-6;
      double right = 1e7;
      while(right - left >1e-4){
      //    cout << left << "  "<<right <<endl;
             double lmid = (left + right)/2;
             double rmid = (lmid + right )/2;
             //cout << lmid << "**** "<<rmid<<endl;
             if(s(lmid)>s(rmid)){
                    left = lmid ;
             }else{
                    right = rmid;
             }
      }
      double h = left ;
      double r = f(left);
      printf("%.3lf %.3lf\n",h,r);
}

int main(){
   int t ;
   cin >>t ;
   while(t--){
          scanf("%d",&n);
          down = 0 ;
          for(int i=1;i<=n;i++){
                 scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
                 down = max(down , z[i]);
          }
        
          solve();
   }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值