sgu 114 三分

题意: 在一条直线上 到每个点pi 个人,位置xi 。 建一个中转站 ,每个位置上的 不高兴 的值 就是 pi*( xi  - X)   ,X 为 中转站。问不高兴的值的总和最小是多少。

对一个位置 向两边的变化速率的分析的。  一个点向右的速率是  左侧人数和 减去 右侧人数和。随着点从左端向右端移动的过程中 速率由负值一直增大, 则总和的变化就是 下凸曲线,就是三分曲线。


#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <cstring>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <assert.h>
#include <queue>
#define REP(i,n) for(int i=0;i<n;i++)
#define TR(i,x) for(typeof(x.begin()) i=x.begin();i!=x.end();i++)
#define ALLL(x) x.begin(),x.end()
#define SORT(x) sort(ALLL(x))
#define CLEAR(x) memset(x,0,sizeof(x))
#define FILLL(x,c) memset(x,c,sizeof(x))
using namespace std;
const double eps = 1e-9;
#define LL long long 
#define pb push_back
const int maxn  = 110000;
int   x[maxn], p[maxn];
int n;
int l,r;
double f(double a){
	double ans = 0 ;
    for(int i=1;i<=n;i++){
    	 ans +=   fabs(a-x[i])*p[i];
    }	
    return ans; 
}
void solve(){
    double left = l; 
    double right = r;
    while(right - left >1e-9){
    	  double lmid = (left +right )/2;
    	  double rmid = (lmid + right)/2;
    	  if(f(lmid)> f(rmid)){
    	  	 left = lmid ;
    	  }else{
    	  	 right =rmid;
    	  }
    }
    printf("%.5f\n",left);
  //  cout <<f(3)<<endl;
  //  cout << f(2)<<endl;
}
int main(){
	
   while(~scanf("%d",&n)){
   	   for(int i=1;i<=n;i++){
   	   	   scanf("%d%d",&x[i],&p[i]);
   	   	   if(i==1){
   	   	   	  l =r = x[i];
   	   	   }else{
   	   	   	   l = min(x[i],l);
   	   	   	   r = max(x[i],r);
   	   	   }
   	   }
   	   solve();
   }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值