Generating Black-Box Adversarial Examples in Sparse Domain

论文:Generating Black-Box Adversarial Examples in Sparse Domain
2021年 arxiv文章

摘要: 我们的研究表明:大的稀疏分量对图像分类器的性能起着至关重要的作用,在这个假设下我们将图像转移到稀疏域中,并设置阈值仅选择K个最大的分量。与最近随机扰动K个低频分量(LoF)的工作相反,我们随机扰动K个最大稀疏分量(LaS)或者来自不同类别的最相关稀疏信号的方向扰动.我们表明LaS成分包含一些中频或高频成分信息.

introduce: 这些说,通过DCT变换将图像映射到频率域,变换到频域之后,大部分频率分量很小,只有少数频率分量很大,频域的这种特性被成为图像的稀疏表示.前人的是取k个LoF扰动,作者这里是取k个LaS分量(这里Las就会包含一些低频和高频信息)

稀疏表示:
DCT变换后.稀疏系数小的对视觉信息可以忽略不计;

LaS和LOF比较 256x256的图片
选(KxKx3)的LaS,LOF
K=8 40%不相交
K=16 39%不相交
K=32 32%不相交

这说明图像信号有相当一部分信息不在低频上

LaS分量对CNNmodel的影响:
作者做的实验:
用Minist 和 CIFAR-10数据集训练一个98.20%的model
将训练model的数据集DCT变换,将训练映射到稀疏域,并对99%,98%,97%,96%,95%,94%,93%,92%的小分量进行归零,然后将这新的8个数据集训练model,
结果发现,model的精度没有显著变化
在这里插入图片描述
这表明稀疏域的小分量不影响分类器的决策边界;

相同查询数下,LaS比LoF可以错误分类更多的图像请添加图片描述
二 定向攻击
在稀疏域中,我们保持K个LaS分量,并强制其余分量为零.然后对每个稀疏向量进行归一化,这里稀疏向量si包含了C类(si)的si的K个最大元素的位置和归一化值的信息

可以得到:

在这里插入图片描述 在这里插入图片描述
请添加图片描述
请添加图片描述
请添加图片描述

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值