Generating Black-Box Adversarial Examples in Sparse Domain

论文:Generating Black-Box Adversarial Examples in Sparse Domain
2021年 arxiv文章

摘要: 我们的研究表明:大的稀疏分量对图像分类器的性能起着至关重要的作用,在这个假设下我们将图像转移到稀疏域中,并设置阈值仅选择K个最大的分量。与最近随机扰动K个低频分量(LoF)的工作相反,我们随机扰动K个最大稀疏分量(LaS)或者来自不同类别的最相关稀疏信号的方向扰动.我们表明LaS成分包含一些中频或高频成分信息.

introduce: 这些说,通过DCT变换将图像映射到频率域,变换到频域之后,大部分频率分量很小,只有少数频率分量很大,频域的这种特性被成为图像的稀疏表示.前人的是取k个LoF扰动,作者这里是取k个LaS分量(这里Las就会包含一些低频和高频信息)

稀疏表示:
DCT变换后.稀疏系数小的对视觉信息可以忽略不计;

LaS和LOF比较 256x256的图片
选(KxKx3)的LaS,LOF
K=8 40%不相交
K=16 39%不相交
K=32 32%不相交

这说明图像信号有相当一部分信息不在低频上

LaS分量对CNNmodel的影响:
作者做的实验:
用Minist 和 CIFAR-10数据集训练一个98.20%的model
将训练model的数据集DCT变换,将训练映射到稀疏域,并对99%,98%,97%,96%,95%,94%,93%,92%的小分量进行归零,然后将这新的8个数据集训练model,
结果发现,model的精度没有显著变化
在这里插入图片描述
这表明稀疏域的小分量不影响分类器的决策边界;

相同查询数下,LaS比LoF可以错误分类更多的图像请添加图片描述
二 定向攻击
在稀疏域中,我们保持K个LaS分量,并强制其余分量为零.然后对每个稀疏向量进行归一化,这里稀疏向量si包含了C类(si)的si的K个最大元素的位置和归一化值的信息

可以得到:

在这里插入图片描述 在这里插入图片描述
请添加图片描述
请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值