论文:Generating Black-Box Adversarial Examples in Sparse Domain
2021年 arxiv文章
摘要: 我们的研究表明:大的稀疏分量对图像分类器的性能起着至关重要的作用,在这个假设下我们将图像转移到稀疏域中,并设置阈值仅选择K个最大的分量。与最近随机扰动K个低频分量(LoF)的工作相反,我们随机扰动K个最大稀疏分量(LaS)或者来自不同类别的最相关稀疏信号的方向扰动.我们表明LaS成分包含一些中频或高频成分信息.
introduce: 这些说,通过DCT变换将图像映射到频率域,变换到频域之后,大部分频率分量很小,只有少数频率分量很大,频域的这种特性被成为图像的稀疏表示.前人的是取k个LoF扰动,作者这里是取k个LaS分量(这里Las就会包含一些低频和高频信息)
稀疏表示:
DCT变换后.稀疏系数小的对视觉信息可以忽略不计;
LaS和LOF比较 256x256的图片
选(KxKx3)的LaS,LOF
K=8 40%不相交
K=16 39%不相交
K=32 32%不相交
这说明图像信号有相当一部分信息不在低频上
LaS分量对CNNmodel的影响:
作者做的实验:
用Minist 和 CIFAR-10数据集训练一个98.20%的model
将训练model的数据集DCT变换,将训练映射到稀疏域,并对99%,98%,97%,96%,95%,94%,93%,92%的小分量进行归零,然后将这新的8个数据集训练model,
结果发现,model的精度没有显著变化
这表明稀疏域的小分量不影响分类器的决策边界;
相同查询数下,LaS比LoF可以错误分类更多的图像
二 定向攻击
在稀疏域中,我们保持K个LaS分量,并强制其余分量为零.然后对每个稀疏向量进行归一化,这里稀疏向量si包含了C类(si)的si的K个最大元素的位置和归一化值的信息
可以得到: