15. 全排列

提示

        LintCode中的相关算法题实现代码,可以在我的GitHub中下载。

题目需求

    给定一个数字列表,返回其所有可能的排列。

    样例

       给出一个列表[1,2,3],其全排列为:

[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

挑战

使用递归和非递归分别解决。

解题思路

        这道题,主要使用的是回溯法,这里我们使用4个方法来进行回溯法的拆解。is_a_solution(int k,int n)用于判断是否符合解,void process_solution(int solution[],vector<int> &nums,vector<vector<int>> &result)主要用于处理解,void construct_candidates(int candidates[],bool position[],int n,int *ncandidates) 用于构造题解,void backtrack(int solution[],int k,int n,vector<int> &nums,bool position[],vector<vector<int>> &result)回溯方法。
     主要的解题思路如下:
        1.由于要求求解一个序列的全排列,那么我们需要记录那些元素是否在候选解中,我们使用一个数组来保存元素是否被选中,这里使用 position数组来保存。
        2.如何判断一个组合是否为解呢?其实很简单,我们知道全排列,那么解必然是所有的元素在候选集中,这个候选集是一个解。
        3.如何递归的求解呢?我们知道,一个元素一旦加入候选集,那么我们可以将对应的位置是否被选中设置为true,递归完成后,我们就将这个位置设置为false。
        4.我们可以使用数组solution保存那些被选中的位置。

实现代码

class Solution {  
public:  
    bool is_a_solution(int k,int n)  
{  
    return n==k;  
}  
void process_solution(int solution[],vector<int> &nums,vector<vector<int>> &result)  
{  
    vector<int> tmp;  
    for(int i=1;i<=nums.size();i++)  
    {  
        tmp.push_back(nums[solution[i]]);  
    }  
    result.push_back(tmp);  
}  
  
void construct_candidates(int candidates[],bool position[],int n,int *ncandidates)  
{  
    for(int i=0,count=0;i<n;i++)  
    {  
        if(!position[i])  
        {  
            candidates[count++]=i;  
            (*ncandidates)++;  
        }  
    }  
}  
  
  
void backtrack(int solution[],int k,int n,vector<int> &nums,bool position[],vector<vector<int>> &result)  
{  
    int candidates[1000];  
    int ncandidates=0;  
    if(is_a_solution(k,n))  
    {  
        process_solution(solution,nums,result);  
    }  
    else  
    {  
        k++;  
        construct_candidates(candidates,position,n,&ncandidates);  
        for (int i = 0; i <ncandidates; ++i)  
        {  
            solution[k]=candidates[i];  
            position[candidates[i]]=true;  
            backtrack(solution,k,n,nums,position,result);  
            position[candidates[i]]=false;  
        }  
    }  
}  
  
  
    vector<vector<int>> permute(vector<int>& nums) {  
         bool position[1000];  
    memset(position,false,sizeof(position));  
    int solution[1001];  
    vector<vector<int>> result;  
    backtrack(solution,0,nums.size(),nums,position,result);  
        return result;  
    }  
};  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值