【LeetCode热题100】70. 爬楼梯(动态规划)

一.题目要求

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

二.题目难度

简单

三.输入样例

示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

提示:
1 <= n <= 45

四.解题思路

递归 ->记忆化搜索->递推->空间优化

五.代码实现

递归(超时)

class Solution {
public:
    int climbStairs(int n) {
    
        return dfs(n);

    }

    int dfs(int n)
    {
        if(n < 0)
            return 0;
        if(n == 0)
            return 1;
        
        int step1 = dfs(n - 1);
        int step2 = dfs(n - 2);
        
        return step1 + step2;
    }

};

记忆化搜索

class Solution {
public:
    int climbStairs(int n) {

        vector<int> cache(n + 1, -1);
        return dfs(n, cache);
    }

    int dfs(int n, vector<int>& cache) {
        if (n < 0) {
            return 0;
        }
        if (cache[n] != -1)
            return cache[n];
        if (n == 0)
            return 1;

        // 跳一次到n
        int num = dfs(n - 1, cache) + dfs(n - 2, cache);
        cache[n] = num;
        return num;
    }
};

翻译成递推(DP)

class Solution {
public:
    int climbStairs(int n) {
    
        vector<int> step(n + 1);

        step[0] = 1;
        step[1] = 1;
        
        for(int i = 2; i <= n ;  i ++)
        {
            step[i] = step[i - 1] + step[i - 2]; 
        }
        return step[n];

    }
};

进一步优化

class Solution {
public:
    int climbStairs(int n) {
    
        vector<int> step(n + 1);

        int p = 1, q = 1;
        int r = 1;
        
        for(int i = 2; i <= n ;  i ++)
        {
            r = p + q;
            p = q;
            q = r;   
        }
        return r;

    }
};

六.题目总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值