一.题目要求
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
二.题目难度
简单
三.输入样例
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
四.解题思路
递归 ->记忆化搜索->递推->空间优化
五.代码实现
递归(超时)
class Solution {
public:
int climbStairs(int n) {
return dfs(n);
}
int dfs(int n)
{
if(n < 0)
return 0;
if(n == 0)
return 1;
int step1 = dfs(n - 1);
int step2 = dfs(n - 2);
return step1 + step2;
}
};
记忆化搜索
class Solution {
public:
int climbStairs(int n) {
vector<int> cache(n + 1, -1);
return dfs(n, cache);
}
int dfs(int n, vector<int>& cache) {
if (n < 0) {
return 0;
}
if (cache[n] != -1)
return cache[n];
if (n == 0)
return 1;
// 跳一次到n
int num = dfs(n - 1, cache) + dfs(n - 2, cache);
cache[n] = num;
return num;
}
};
翻译成递推(DP)
class Solution {
public:
int climbStairs(int n) {
vector<int> step(n + 1);
step[0] = 1;
step[1] = 1;
for(int i = 2; i <= n ; i ++)
{
step[i] = step[i - 1] + step[i - 2];
}
return step[n];
}
};
进一步优化
class Solution {
public:
int climbStairs(int n) {
vector<int> step(n + 1);
int p = 1, q = 1;
int r = 1;
for(int i = 2; i <= n ; i ++)
{
r = p + q;
p = q;
q = r;
}
return r;
}
};
六.题目总结
–