数据预处理之定量特征二值化与定性特征哑变量编码

   1. 定量特征二值化   

   在数据挖掘领域,定量特征二值化的目的是为了对定量的特征进行“好与坏”的划分,以剔除冗余信息。举个例子,银行对5名客户的征信进行打分,分别为50,60,70,80,90。现在,我们不在乎一个人的征信多少分,只在乎他的征信好与坏(如大于90为好,低于90就不好);再比如学生成绩,大于60及格,小于60就不及格。这种“好与坏”、“及格与不及格”的关系可以转化为0-1变量,这就是二值化。变化方式如下所示:

                         

from sklearn.preprocessing import Binarizer
#阈值设置为3,对x的每一个元素都进行二值化
Binarizer(threshold=3).fit_transform(x)      

         2. 定性特征哑编码

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值