退役了

没去打EC其实早就算退役选手,但也等现在EC打完才真的感觉自己真的退役了吧。

我整个大学基本都在打比赛。这个比赛真的带给了我很多。这比赛其实没什么用,大佬当游戏打,菜鸡打了个辣鸡牌没卵用。所以没兴趣的话还是别打了保平安吧。

今年打了两场,暑假之前被教练拆了个队友,和老队友啦啦今年打了两场,带了两个学弟。坑了ztl香港打了个铁。带玉米北京搞了个银。其实学弟要是训练的话感觉可以打个金然鹅。当然也没什么好怪的自己状态也不是特别好手速有点慢,知识漏洞也很多。debug方面学弟还是给了很多建议和帮助的。

 

没打EC还是有点遗憾的。没能见到好多人。不知道还有没有希望见到。啦啦看了题感觉ec能金,我想了想有点亏,痛失金牌。想了想,啦啦说人贵有傲骨,很多说尊严值几个钱。想了想的确不值钱。有遗憾但是不后悔吧。

 

其实最遗憾的是因为ec和女朋友分手了。她真的很好。

最难过的事大概是她陪我做了最艰难的抉择,当我下定决心的时候,她跟我回了挥手告别。

最近真的很颓吧。希望自己能好起来。最近每天都喝酒想喝醉了睡觉但是竟然还会做梦梦到,半夜惊醒。可以说是很难过了。

但不管怎么样我还是都会在吧。不知道她会不会看到这篇。应该是不会了吧。毕竟现在还用csdn的人那么少哈哈哈哈。

记得好好对她。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值