GPU利用率背后的性能真相

f448f115cc541c7858e462881b6f1797.png

一般而言,机器学习团队理解GPU使用情况的常见度量标准是GPU利用率,通常通过在终端中运行nvidia-smi来查看。许多集成的可观测性工具也将GPU利用率作为其主要性能指标进行跟踪。

然而,AI Infra团队Trainy在实操中发现,GPU利用率并不总是理解GPU性能的最佳指标。实际上,在不做任何计算的情况下读取/写入内存,就可达到100%的GPU利用率!

本文作者Roanak Baviskar在本文中讲述了他们是如何发现这一点的,以及在这一过程中的其他发现。

(本文由OneFlow编译发布,转载请联系授权。来源:https://trainy.ai/blog/gpu-utilization-misleading)

作者|Roanak Baviskar

OneFlow编译
题图由
SiliconCloud平台生成

在Trainy,我们致力于管理GPU集群的基础设施,因此花费了大量时间思考这些问题。去年,我们与一家基础模型公司合作,以扩展和提高他们LLM训练的效率。我们遵循了几乎所有关于PyTorch性能调优指南中提到的基本步骤,即:

  • 通过更改数据加载器默认值(num_workers,batch_size,pin_memory,预取因子等)来充分利用GPU。

  • 通过使用混合精度(fp16,bf16)最大化使用张量核心

  • 使用来自apex/deepspeed(例如 FusedAdam、FusedAdamW 等)的融合优化器

  • 使用专为训练(H100SXM、A100SXM)设计的实例/网络。同时,可能的话,使用更新的实例H100 > A100 > V100

这些简单的更改使我们达到了100%的GPU利用率,并具有出色功耗,这真是太好了!为了检查是否还有更多提升空间,我们计算了训练工作负载的MFU(模型算力利用率)。

MFU,即模型FLOPS利用率,是理解GPU性能的最佳指标之一,这是在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值