G. Rudolf and CodeVid-23
题目传送门:
https://codeforces.com/contest/1846/problem/G
题意:
有n种症状,m个药品,每种药品可以治疗相应症状(1为可治)同时产生某种副作用(1为产生副作用生成的相应的病),一种药物要服用d天才能消除症状,一次只能服用一种药物,求消除所有症状的最小天数。
思路:
先利用状态压缩,把二进制字符串转化成十进制表示,再用dijkstra求最小天数。
代码显示如下:
#include<bits/stdc++.h>
using namespace std;
#define int long long
typedef pair<int, int>PII;
const int N = 1200;
//int h[N], idx, ne[N], w[N];
int n, m;
int dist[N];
bool st[N];
int sta;
typedef struct node {
int y, w;
} node;
vector<node> e[N];
//void add(int a,int b,int c) {//会超时
// e[idx]=b;
// ne[idx]=h[a];
// w[idx]=c;
// h[a]=idx++;
//}
auto read() {//将字符串转化为二进制(状态压缩)
int x = 0;
string s;
cin >> s;
for (auto c : s) {
x = x * 2 + c - '0';
}
return x;
}
int dijkstra() {//(dijkstra求最短路)
for (int i = 0; i < (1 << n); i++) dist[i] = 1e18; //不要写0x3f3f3f3f
dist[sta] = 0;//初始原点换成起始症状,求sta->0
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, sta});
while (heap.size()) {
auto[d, x] = heap.top();
heap.pop();
if (st[x]) continue;
st[x] = true;
for (auto [y, w] : e[x]) {
if (dist[y] > dist[x] + w)
dist[y] = dist[x] + w;
heap.push({dist[y], y});
}
}
if (dist[0] == 1e18) return -1;
else return dist[0];
}
void solve() {
cin >> n >> m;
//可能会出现的状态有2^n种,即[0,2^n-1]
sta = read();
for (int i = 0; i < (1 << n); i++) e[i].clear();
for (int i = 0; i < (1 << n); i++) st[i] = 0;
for (int i = 1; i <= m; i++) {
int d;
cin >> d;
int zhi = read();
int fu = read();
//一个状态经过不同类以及不同次的更新后变成的状态可能有2^n种,想知道其达到最短天数的更新的次数和类别都是未知的,
//所以要把2^n种状态都遍历一遍才能不漏情况
for (int u = 0; u < (1 << n); u++) { //更新所有可能的状态到达v的消耗天数
int v = (u & (~zhi)) | fu;//先对治疗取反,再与原症状取&,最后与副作用取|,得到最后治疗并叠加副作用状态
e[u].push_back({v, d});
}
}
cout << dijkstra() << endl;
}
signed main() {
int t;
cin >> t;
while (t--) {
solve();
}
}