Codeforces883(Div.3)G(状态压缩+最短路)

文章讲述了如何利用Dijkstra算法和状态压缩的方法解决一个关于医疗问题的图论模型。给定症状、药品及其副作用,目标是找到消除所有症状所需的最短天数。代码示例中,首先将二进制字符串转换为十进制,然后应用Dijkstra算法求解最短路径。
摘要由CSDN通过智能技术生成

G. Rudolf and CodeVid-23

题目传送门:

https://codeforces.com/contest/1846/problem/G

题意:

有n种症状,m个药品,每种药品可以治疗相应症状(1为可治)同时产生某种副作用(1为产生副作用生成的相应的病),一种药物要服用d天才能消除症状,一次只能服用一种药物,求消除所有症状的最小天数。

思路:

先利用状态压缩,把二进制字符串转化成十进制表示,再用dijkstra求最小天数。

代码显示如下:

#include<bits/stdc++.h>
using namespace std;
#define int long long
typedef pair<int, int>PII;
const int N = 1200;
//int h[N], idx, ne[N], w[N];
int n, m;
int dist[N];
bool st[N];
int sta;
typedef struct node {
	int y, w;
} node;
vector<node> e[N];
//void add(int a,int b,int c) {//会超时
//	e[idx]=b;
//	ne[idx]=h[a];
//	w[idx]=c;
//	h[a]=idx++;
//}

auto read() {//将字符串转化为二进制(状态压缩)
	int x = 0;
	string s;
	cin >> s;
	for (auto c : s) {
		x = x * 2 + c - '0';
	}
	return x;
}

int dijkstra() {//(dijkstra求最短路)
	for (int i = 0; i < (1 << n); i++) dist[i] = 1e18; //不要写0x3f3f3f3f

	dist[sta] = 0;//初始原点换成起始症状,求sta->0
	priority_queue<PII, vector<PII>, greater<PII>> heap;
	heap.push({0, sta});
	while (heap.size()) {
		auto[d, x] = heap.top();
		heap.pop();

		if (st[x]) continue;
		st[x] = true;

		for (auto [y, w] : e[x]) {
			if (dist[y] > dist[x] + w)
				dist[y] = dist[x] + w;
			heap.push({dist[y], y});
		}

	}

	if (dist[0] == 1e18) return -1;
	else return dist[0];
}

void solve() {
	cin >> n >> m;
	//可能会出现的状态有2^n种,即[0,2^n-1]
	sta = read();
	for (int i = 0; i < (1 << n); i++) e[i].clear();
	for (int i = 0; i < (1 << n); i++) st[i] = 0;
	for (int i = 1; i <= m; i++) {
		int d;
		cin >> d;
		int zhi = read();
		int fu = read();
		//一个状态经过不同类以及不同次的更新后变成的状态可能有2^n种,想知道其达到最短天数的更新的次数和类别都是未知的,
		//所以要把2^n种状态都遍历一遍才能不漏情况
		for (int u = 0; u < (1 << n); u++) { //更新所有可能的状态到达v的消耗天数
			int v = (u & (~zhi)) | fu;//先对治疗取反,再与原症状取&,最后与副作用取|,得到最后治疗并叠加副作用状态
			e[u].push_back({v, d});
		}
	}
	cout << dijkstra() << endl;
}

signed main() {

	int t;
	cin >> t;
	while (t--) {

		solve();
	}
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>