动态规划之最长回文子串

本文介绍了如何使用动态规划方法寻找给定字符串中的最长回文子串。通过状态转移方程dp[i][j] = (s[i] == s[j]) && (j - i <= 2 || dp[i + 1][j - 1]),确定了当两个字符相同且它们之间的子串也是回文时的状态。完整代码展示了动态规划的实现,时间复杂度为O(n^2)。此外,还提到了复杂度为O(n)的Manacher算法(马拉车)作为替代方案。
摘要由CSDN通过智能技术生成

前言

虽然求最长回文子串有更快的方法,但是用动态规划做也行,就当是扩充知识面了
闲话不多说,开始正题。

正文

最长回文串就是例如“abcba”这种字符串,然后需要在给定的字符串里面求一个最长的回文子串,这时候我们用动态规划最重要的就是找一个状态转移方程:

d p [ i ] [ j ] = { (   s [ i ] = = s [ j ]   ) & & ( j − i < = 2 ∣ ∣ d p [ i + 1 ] [ j − 1 ] )     i ! = j 1                                                                                  i = =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值