一、定义
二叉搜索树(Binary Search Tree)(BST)(又:二叉查找树,二叉排序树)
递归的定义:
它或者是一棵空树
或者是具有下列性质的二叉树:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值
它的左、右子树也分别为二叉排序树
例:
二、模版
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
typedef int KeyType;
typedef struct BST {
KeyType key; //关键字
BST* left; //左孩子指针
BST* right; //右孩子指针
BST* parent; //指向父节点指针
}BST, *bst;
void Insert(bst* root, KeyType key);
bst Search(bst root, KeyType key);
bst Search_Min(bst root);
bst Search_Max(bst root);
bst Search_Pre(bst pre);
bst Search_Next(bst next);
bool Delete(bst* root, KeyType key);
void Create(bst* root, KeyType *keyArray, int len);
int main()
{
bst root = NULL;
KeyType nodeArray[11] = {15, 6, 18, 3, 7, 17, 20, 2, 4, 13, 9};
Create(&root, nodeArray, 11);
for (int i=0; i<2; ++i) {
Delete(&root,nodeArray[i]);
}
printf("%d\n", Search_Pre(root)->key);
printf("%d\n", Search_Next(root)->key);
printf("%d\n", Search_Min(root)->key);
printf("%d\n", Search_Max(root)->key);
printf("%d\n", Search(root,13)->key);
return 0;
}
//插入
//可能要改变根结点的地址,所以传的是二级指针
void Insert(bst* root, KeyType key)
{
bst t = (bst)malloc(sizeof(BST));
t->key = key;
t->left = t->right = t->parent = NULL;
if ((*root) == NULL) {
*root = t;
return;
}
//插入到当前结点(*root)的左孩子
if((*root)->left == NULL && (*root)->key > key){
t->parent = (*root);
(*root)->left = t;
return;
}
//插入到当前结点(*root)的右孩子
if((*root)->right == NULL && (*root)->key < key){
t->parent = (*root);
(*root)->right = t;
return;
}
if (key == (*root)->key) {
return;
} else if (key < (*root)->key) {
Insert(&((*root)->left), key);
} else {
Insert(&((*root)->right), key);
}
}
//查找元素,找到返回关键字的结点指针,没找到返回NULL
bst Search(bst root, KeyType key)
{
if(root == NULL) {
return NULL;
} else if (key < root->key) {
return Search(root->left, key);
} else if (key > root->key) {
return Search(root->right, key);
} else {
return root;
}
}
//查找最小关键字,空树时返回NULL
bst Search_Min(bst root)
{
if (root == NULL) {
return NULL;
} else if (root->left == NULL) {
return root;
} else {
return Search_Min(root->left);
}
}
//查找最大关键字,空树时返回NULL
bst Search_Max(bst root)
{
if (root == NULL) {
return NULL;
} else if (root->right == NULL) {
return root;
} else {
return Search_Max(root->right);
}
}
//查找某个结点的前驱
bst Search_Pre(bst pre)
{
if(pre == NULL) { //空树
return pre;
} else if(pre->left) { //有左子树、左子树中最大的那个
return Search_Max(pre->left);
} else { //无左子树,查找某个结点的右子树遍历完了
if (pre->parent == NULL) {
return NULL;
}
while (pre) { //向上寻找前驱
if (pre->parent->right == pre) {
break;
}
pre = pre->parent;
}
return pre->parent;
}
}
//查找某个结点的后继
bst Search_Next(bst next)
{
if(next == NULL) { //空树
return next;
} if (next->right) {//有右子树、右子树中最小的那个
return Search_Min(next->right);
} else { //无右子树,查找某个结点的左子树遍历完了
if (next->parent == NULL) {
return NULL;
}
while (next){ //向上寻找后继
if (next->parent->left == next) {
break;
}
next = next->parent;
}
return next->parent;
}
}
//根据关键字删除某个结点,删除成功返回true,否则返回false
//如果把根结点删掉,那么要改变根结点的地址,所以传二级指针
bool Delete(bst* root, KeyType key)
{
bst q;
bst p = Search(*root, key); //查找到要删除的结点
KeyType temp; //暂存后继结点的值
if (p == NULL) { //没查到此关键字
return false;
} else if (p->left == NULL && p->right == NULL) { //1.被删结点是叶子结点,直接删除
//只有一个元素,删完之后变成一颗空树
if (p->parent == NULL){
free(p);
(*root) = NULL;
} else {
//删除的结点是父节点的左孩子
if (p->parent->left == p) {
p->parent->left = NULL;
}
else {//删除的结点是父节点的右孩子
p->parent->right = NULL;
}
free(p);
}
} else if (p->left && !(p->right)) { //2.被删结点只有左子树
p->left->parent = p->parent;
//如果删除是父结点,要改变父节点指针
if (p->parent == NULL) {
*root=p->left;
}
//删除的结点是父节点的左孩子
else if (p->parent->left == p) {
p->parent->left = p->left;
}
else {//删除的结点是父节点的右孩子
p->parent->right=p->left;
}
free(p);
} else if (p->right && !(p->left)) { //3.被删结点只有右孩子
p->right->parent = p->parent;
//如果删除是父结点,要改变父节点指针
if (p->parent == NULL) {
*root=p->right;
}
//删除的结点是父节点的左孩子
else if (p->parent->left == p) {
p->parent->left=p->right;
}
//删除的结点是父节点的右孩子
else {
p->parent->right=p->right;
}
free(p);
}
//4.被删除的结点既有左孩子,又有右孩子
//该结点的后继结点肯定无左子树(参考上面查找后继结点函数)
//删掉后继结点,后继结点的值代替该结点
else {
//找到要删除结点的后继
q = Search_Next(p);
temp = q->key;
//删除后继结点
Delete(root, q->key);
p->key = temp;
}
return true;
}
//创建一棵二叉查找树
void Create(bst* root, KeyType *keyArray, int len)
{
//逐个结点插入二叉树中
for(int i=0; i<len; ++i) {
Insert(root, keyArray[i]);
}
}
转自
http://blog.csdn.net/touch_2011/article/details/6831924
略有改动