(-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))
worldquant brain平台上调整后的语法:
(-1 * ts_corr(rank(ts_delta(log(volume), 2)), rank(((close - open) / open)), 6))
这个alpha因子的逻辑可以分为以下几个步骤:
1. 成交量变化的度量:ts_delta(log(volume), 2)
- 计算对数成交量:对成交量取对数(
log(volume)
),目的是减少极端值的影响,使数据更平稳。 - 两日差分:
ts_delta(..., 2)
计算对数成交量的 两天变化量,捕捉成交量的短期波动趋势。- 正值表示成交量上升,负值表示下降。
2. 日内价格变动率:(close - open) / open
- 计算当日价格变动百分比:以开盘价为基准,衡量收盘价相对于开盘价的涨跌幅。
- 正值表示当日上涨(收盘价 > 开盘价),负值表示下跌。
3. 横截面排名(Rank)
- 对成交量变化排名:
rank(ts_delta(...))
将各股票的成交量变化在全市场横向排序,转化为分位数(0到1之间)。 - 对价格变动排名:
rank((close - open)/open)
类似地,对价格变动率进行横向排序。
4. 时间序列相关性:ts_corr(..., 6)
- 计算6天窗口的相关性:在过去6个交易日中,计算两个排名序列的 滚动相关性。
- 相关性衡量 成交量变化排名 与 价格变动排名 的联动性:
- 正相关:成交量上升的股票通常伴随价格上涨(量价齐升)。
- 负相关:成交量上升的股票伴随价格下跌(量价背离)。
- 相关性衡量 成交量变化排名 与 价格变动排名 的联动性:
5. 反转操作:-1 * ...
- 取负值:将相关性结果乘以
-1
,反转逻辑方向。- 若量价正相关(趋势延续信号),因子值为负,可能预示未来反转;
- 若量价负相关(背离信号),因子值为正,可能预示趋势延续或反转修复。
核心逻辑解析
-
量价背离策略:
- 假设 量价背离(负相关性)可能预示趋势反转。例如:
- 成交量上升但价格下跌(抛压增强),或成交量下降但价格上涨(动能不足)。
- 因子通过负号放大背离信号,做多负相关股票(因子值正),做空正相关股票(因子值负)。
- 假设 量价背离(负相关性)可能预示趋势反转。例如:
-
短期反转效应:
- 若过去6天量价同步上升(正相关),可能已过度反应,未来回调概率高(因子做空);
- 若量价背离(负相关),可能处于非理性波动,未来均值回归(因子做多)。
潜在策略意图
- 捕捉短期反转机会:利用量价背离的统计规律,寻找过度反应或反应不足的股票。
- 中性化处理:通过横截面排名消除市场整体波动的影响,聚焦个股相对强弱。
- 动态调整:6天窗口平衡敏感性与稳定性,适应短期市场变化。
关键公式总结
Factor
=
−
1
×
Rolling-Correlation
6
d
(
Rank
(
Δ
2
log
(
Volume
)
)
,
Rank
(
Close
−
Open
Open
)
)
\text{Factor} = -1 \times \text{Rolling-Correlation}_{6d} \left( \text{Rank}(\Delta_2 \log(\text{Volume})), \ \text{Rank}\left(\frac{\text{Close} - \text{Open}}{\text{Open}}\right) \right)
Factor=−1×Rolling-Correlation6d(Rank(Δ2log(Volume)), Rank(OpenClose−Open))
逻辑链条:
成交量短期变化 → 与价格变动联动性 → 反向预测未来收益。
目前没有调整至可提交的状态。欢迎留言交流!