- 博客(56)
- 收藏
- 关注
原创 MySQL 创建用户,建库,建表
通过以上步骤,即可完成用户创建、数据库创建及表结构设计。实际使用时,根据业务需求调整表字段和权限范围。输入密码后回车,进入 MySQL 命令行界面。
2025-03-20 14:38:05
253
原创 kafka启动命令
首先要确保已经安装好了 Java 环境,因为 Kafka 是基于 Java 开发的,需要 Java 运行时的支持。配置文件来启动 Kafka 服务器实例,之后 Kafka 就处于运行状态,可以开始使用它进行消息的生产和消费等操作了。按照默认配置启动 Kafka 服务器,使其可以对外提供服务,接收和处理消息的生产与消费请求等。等)进行修改,例如修改监听地址、端口等相关参数,以更好地适配实际的网络环境和业务场景。另外,在实际使用中,可能还需要根据具体需求对 Kafka 的配置文件(如。
2025-03-13 15:41:46
371
原创 使用SDKMAN!安装springboot
Spring Boot 需要 Java 环境才能运行。如果您尚未安装 Java,可以通过 SDKMAN!安装 OpenJDK。完成这些步骤后,您就可以在 Ubuntu 环境中使用 Spring Boot 进行开发了。完成上述步骤后,您就可以使用 SDKMAN!安装 Spring Boot 了。,并将其配置到您的用户目录中。安装完成后,需要初始化 SDKMAN!或者,您也可以重新打开终端窗口,让初始化脚本自动加载。如果安装成功,您将看到 SDKMAN!运行以下命令验证 SDKMAN!命令之前,您需要先安装。
2025-03-03 15:37:36
366
原创 【ubuntu搭建jupyter notebook并在windows上访问】
要设置 Jupyter Notebook 的监听地址和端口,您需要修改 Jupyter Notebook 的配置文件。
2025-02-26 17:43:32
464
原创 防火墙ufw和firewalld对比
在 Linux 系统中,ufw(Uncomplicated Firewall)和firewalld(Firewall Daemon)是两个不同的防火墙管理工具,它们分别属于不同的防火墙系统。因此,它们的命令和操作方式也有所不同。
2025-02-21 09:45:41
536
原创 虚拟机之间复制文件
在防火墙关闭的前提下,您可以通过几种不同的方法将文件从一个虚拟机复制到另一个虚拟机。这里,我们假设您想要从 IP 地址为 192.168.4.5 的虚拟机上的/tmp文件夹复制文件到当前虚拟机(192.168.4.6)的/tmp文件夹下。
2024-11-25 16:02:20
1311
原创 端口port常识
端口(Port)用于区分不同的服务或进程。在网络通信中,每个运行在计算机上的进程都会通过一个端口来与其他计算机上的进程进行通信。了解这些基本的端口知识和使用常识可以帮助你更好地管理网络服务和提高网络安全性。
2024-11-22 10:01:29
610
原创 preparedStatement.executeUpdate()/addbatch()
【代码】preparedStatement.executeUpdate()/addbatch()
2024-11-15 15:30:44
846
原创 Java库lombok
方法来生成哈希值,该方法接受多个参数并根据这些参数计算出一个哈希值。这样可以确保如果两个对象通过。然后将传入的对象强制转换为当前类型,并逐个比较各个属性是否相等。方法中,首先进行简单的引用相等性检查。或者不是同一类型的对象,则返回。方法也应该返回相同的结果。方法比较相等,那么它们的。
2024-11-07 10:44:37
1002
原创 Bash脚本的使用场景和调试方法
Bash 脚本可以在任何支持 Bash 的环境中使用,包括但不限于各种 Linux 发行版、Mac OS X(通过默认的 Terminal 应用或 iTerm2 等第三方终端模拟器),以及通过 Windows Subsystem for Linux(WSL)在 Windows 10 和更高版本上运行。此外,Bash 脚本也可以在 Docker 容器中运行,以实现环境的一致性和可移植性。调试 Bash 脚本可以是一个挑战,尤其是对于复杂的脚本。调试是一个逐步的过程,需要耐心和细致的检查。
2024-11-04 10:29:16
702
原创 Linux/Unix echo命令
echo是 Linux 和 Unix 系统中一个非常基本且常用的命令行工具,用于在终端或文件中显示文本。以下是一些echo在终端显示 “Hello, World!echo $PATH显示环境变量PATH的值。将 “New content” 写入file.txt,如果文件不存在则创建它。将 “Additional content” 追加到file.txt文件的末尾。使用-e选项来解释转义序列(如\n表示换行)。使用-n选项来防止echo命令在输出后添加换行符。echo $?显示上一个命令的退出状态。$(
2024-11-04 10:22:33
1290
原创 Linux/Unix awk命令
的强大之处在于它能够处理复杂的文本和数据操作,包括模式匹配、字段分割、数组操作等。是一个强大的文本处理工具,它在 Unix 和类 Unix 系统中用于模式扫描和处理语言。创建一个数组,将每行的第一个字段作为键,第二个字段作为值,最后打印数组的内容。的功能远不止这些,它几乎可以作为一个完整的编程语言来使用。如果第一个字段的值大于10,则打印第一个和第二个字段。计算第一字段的总和,并在处理完所有行后打印。的内置变量,代表当前处理的是第几行。打印每行的第一个和第二个字段。打印每行的第一个字段。
2024-11-04 10:17:48
647
原创 Linux/Unix grep命令
是一个在 Linux 和 Unix 系统中广泛使用的命令行工具,用于搜索文件中的文本行。非常强大,可以通过组合不同的选项和正则表达式来执行复杂的文本搜索任务。文件中搜索包含 “pattern” 的行,并输出这些行。选项来计算 “pattern” 在文件中出现的次数。选项来列出包含 “pattern” 的文件名。选项来显示不包含 “pattern” 的行。目录及其子目录中搜索 “pattern”。选项只输出匹配的字符串,而不是整行。选项来使用扩展正则表达式。选项来高亮显示匹配的文本。命令的一些基本用法。
2024-11-04 10:16:42
696
原创 Unix 中文件权限设置
所有者(owner)、组(group)和其他(others):读(read)、写(write)和执行(execute)- 所有者(owner):读(read)、写(write)和执行(execute)- 所有者(owner):读(read)、写(write)和执行(execute)- 所有者(owner):读(read)、写(write)和执行(execute)- 所有者(owner):读(read)、写(write)和执行(execute)- 组(group):读(read)和执行(execute)
2024-11-01 19:45:01
383
原创 【3171. 找到按位或最接近 K 的子数组】
即 0 | 0= 0 , 1 | 0= 1 , 0 | 1= 1 , 1 | 1= 1。即 0 ^ 0=0 , 0 ^ 1= 1 , 1 ^ 0= 1 , 1 ^ 1= 0。运算规则:只有两个数的二进制同时为1,结果才为1,否则为0。运算规则:参加运算的两个数,如果两个相应位为“异”(值不同),则该位结果为1,否则为0。即 0 & 0= 0 ,0 & 1= 0,1 & 0= 0, 1 & 1= 1。运算规则:参加运算的两个数只要两个数中的一个为1,结果就为1。
2024-10-09 17:54:32
243
1
原创 入门篇-3 数据结构在编程语言中的应用
数据结构是编程语言中用于存储、组织和管理数据的方式,它们对于提高程序的效率和性能至关重要。它们在内存中不一定连续,支持动态的数据插入和删除,适用于需要频繁更新数据的程序,如实现堆栈和队列。它们在内存中连续存储,使得数据访问速度快,常用于需要快速索引的场景,如处理大量数据的科学计算和图像处理。:堆是一种特殊的树形数据结构,通常用于实现优先队列,支持快速的数据插入和删除操作。在实际编程中,深入理解各种数据结构的原理和特性,以及它们在不同编程语言中的实现方式,对于设计高效、可扩展的程序至关重要。
2024-10-09 17:20:52
457
1
原创 入门篇-2 为什么需要学习数据结构
选择合适的数据结构可以减少算法的时间复杂度,比如使用哈希表(Hash Table)可以快速检索数据,其平均时间复杂度为O(1),而使用列表(List)进行检索的时间复杂度为O(n)。无论你是初学者还是经验丰富的开发者,不断学习和实践数据结构,都将使你在编程艺术的道路上走得更远。例如,使用位图(Bit Map)可以高效地表示大量布尔值数据,只需少量的内存空间。良好的数据结构可以提高代码的逻辑清晰度,使得代码更易于阅读和维护。许多算法,如排序、搜索、图算法等,都需要依赖特定的数据结构来实现。
2024-10-09 16:27:11
490
原创 入门篇-4 数据结构在人工智能领域的应用
在处理图数据或进行图分析时,如图神经网络(GNNs)和网络分析,特定的图数据结构被用来表示节点和边,以及它们之间的关系。:在数据输入到模型之前,通常需要进行预处理,如归一化、标准化等,这些步骤涉及到数组和矩阵的操作,以及可能的链表和栈的使用。:数据库和数据仓库在机器学习中用于存储和管理数据,它们使用结构化的数据结构,如关系表和索引,以便于快速检索和分析。:在深度学习中,神经网络的构建依赖于复杂的数据结构,如张量和矩阵,这些结构用于存储和变换网络中的权重和激活值。
2024-10-09 16:03:42
476
原创 入门篇-1 数据结构简介
数据结构是计算机中存储、组织数据的方式。一个好的数据结构可以提高程序的性能,减少存储空间的使用,使得数据的操作更加直观和高效。
2024-10-09 16:00:06
489
原创 DM数据库TEXT字段查询报数据类型不匹配
kettle增量插入数据,作为变量id>?时报错,数据类型不匹配。字段用函数substr()后,解决报错。查看表id数据类型是text。
2024-08-09 16:44:34
524
原创 Flink示例
假设有以下两个订单流数据,数据字段分别为用户ID、购买的商品名称、商品数量。目标:合并两个流的数据,并筛选出商品数量大于2的订单数据。11> Order(2,笔记本,3)10> Order(2,手表,3)12> Order(1,尺子,3)1> Order(1,铅笔,4)2L,"笔记本",3。4L,"计算器",1。
2024-03-11 13:50:11
450
原创 python并发编程之多进程、多线程、异步和协程详解
总结起来,多进程适用于CPU密集型任务,多线程适用于IO密集型任务,异步和协程适用于IO密集型任务且需要高性能。在执行一个IO操作时,可以立即切换到执行其他任务,而不需要等待IO操作的完成。模块提供了多进程编程的功能,可以方便地创建和管理多个进程。多进程适用于CPU密集型任务,可以充分利用多核CPU的优势。在Python中,有多种并发编程的方式可供选择,包括多进程、多线程、异步和协程。模块提供了异步编程的功能,可以通过协程来实现异步操作。异步编程适用于IO密集型任务,可以提高程序的吞吐量。
2024-03-06 18:12:22
1187
原创 GoLevelDB构建数据字典
以上代码示例了如何使用 GoLevelDB 来插入数据、获取数据以及遍历数据字典。你可以根据需要,添加更多的数据插入操作和遍历操作,以生成你想要的数据字典。GoLevelDB 是一个开源的键值存储数据库,可以用于构建数据字典,下面是一些示例代码,展示了如何使用 GoLevelDB 来生成数据字典。首先,你需要在 Go 中导入 GoLevelDB 包,并创建一个数据库实例。函数来创建或打开一个数据库文件。
2024-02-27 10:08:50
499
原创 解决Exception in thread “main“ joptsimple.UnrecognizedOptionException: zookeeper is not a recognized问题
解决kafka报错Exception in thread “main“ joptsimple.UnrecognizedOptionException: zookeeper is not a recognized
2024-02-08 16:36:34
540
原创 升级anaconda中python到3.10版本
需要使用函数pairwise,发现python版本偏低,尝试了把anaconda中jupyter notebook中的python环境升级到3.10。回到anaconda要在左侧list中的environment环境中进行配置,将之前的环境更换为python3.10,就可以使用了。为了避免对现有环境产生影响,创建一个新的虚拟环境安装python3.10。如果显示python3.10环境,那么python3.10就安装成功了。在base下查看当前conda环境配置。安装Python3.10。
2024-01-29 15:56:51
8732
1
原创 云服务器docker-compose部署kafka并编写ava使用kafka示例代码
这个Docker Compose文件将会启动一个Zookeeper和一个Kafka容器。注意,我们在Kafka容器中设置了一个环境变量来指定Kafka的主机名。然后,创建一个新的目录来存放你的Docker Compose配置文件。通过以上步骤,你应该可以在云服务器上使用Docker Compose部署Kafka,并编写Java示例代码来使用Kafka。以上代码包括一个简单的Kafka生产者和一个消费者。接下来,你可以编写使用Kafka的Java示例代码。到你的类路径中,以便在命令中使用。
2024-01-09 15:57:39
572
原创 RFM模型
通过对这三个指标进行综合评估,RFM模型将客户分为不同的等级,比如将客户分为高价值客户、中价值客户和低价值客户,一次性客户、长时间没有购买的潜在流失客户等,以帮助企业更好地了解客户行为,制定相应的营销策略,提高客户满意度和忠诚度。根据RFM分数的高低来划分客户群体,例如可以将客户分为A、B、C、D四个等级,A代表最有价值的客户。RFM模型是一种用于客户价值分析的经典模型,用于客户细分和分析的方法,可以帮助企业识别出最有价值的客户、了解他们的行为模式,并制定有针对性的营销策略。
2023-12-29 14:40:47
728
原创 【自然语言处理】类似GPT的模型
CTRL (Conditional Transformer Language Model): CTRL 是 OpenAI 开发的一种条件语言模型,在文本生成任务中可以根据给定的控制码生成特定领域的文本。RoBERTa: RoBERTa 是一种基于 BERT 的模型,它使用更大的预训练数据集和更长的预训练时间进行训练,从而提高了模型的性能。它采用了一种全新的自回归预训练方法,解决了BERT等模型中存在的排列不变性的问题,提高了生成文本的质量。具体选择哪个工具取决于你的需求和所处理的任务类型。
2023-12-29 14:00:35
861
原创 【数据挖掘】模型融合
堆叠法(stacking/blending):将多个模型的预测结果作为输入,训练一个新的模型来得到最终的预测结果。投票法(Voting):根据多个模型的预测结果,统计出现频率最高的预测结果作为最终的预测结果。投票法适用于模型预测结果的方差较大的情况。模型融合是指将多个不同的机器学习模型组合起来,通过综合多个模型的预测结果来得到更准确的预测结果。模型融合可以提高模型的鲁棒性,减小模型的方差,提高模型的泛化能力。在进行模型融合时,需要注意选择不同模型之间具有较低的相关性,避免多个模型预测结果的冗余。
2023-12-28 16:40:17
1795
原创 【数据倾斜笔记】
数据倾斜是指在数据集中某个特定的特征值出现的频率远高于其他特征值的情况。这种情况在数据分析和机器学习中经常出现,可能会影响模型的性能和准确性。数据倾斜可能出现在分类问题中的目标变量,也可能出现在特征变量中。在目标变量中,数据倾斜表示某个类别的样本数量远大于其他类别的样本数量,这可能导致模型对少数类别的预测效果不佳。在特征变量中,数据倾斜表示某个特征值出现的频率远高于其他特征值,这可能导致模型对该特征的重要性判断不准确。
2023-12-28 10:04:06
1139
原创 风控模型 -- 模型调参
贝叶斯优化(Bayesian Optimization):贝叶斯优化通过构建参数的先验分布,利用已有的参数组合和性能评估结果,推断模型性能的后验分布,并选择具有最大期望改善的参数进行评估。贝叶斯优化在处理高维参数空间和高度非线性的情况下具有很好的效果。自动机器学习工具可以根据指定的性能指标和时间限制,快速评估和比较不同模型和参数组合的性能,并给出最佳的模型和参数。网格搜索(Grid Search):通过指定一组不同的参数值,将参数空间划分成网格,遍历网格中的每个参数组合,并评估模型在不同参数组合下的性能。
2023-12-27 16:03:14
468
原创 特征工程 -- 特征选择
嵌入式特征选择(Embedded):该方法是将特征选择过程融入到模型训练中,通过学习过程自动选择出各个特征的权值系数,根据系数从大到小选择特征(类似于Filter,只不过系数是通过训练得来的)。特征选择是特征工程中的一个重要步骤,它的目的是从原始特征中选择出对模型建立和预测具有重要影响的特征子集,以达到提高模型精确度,减少运行时间的效果。最后需要注意的是,特征选择是一个迭代的过程,可能需要多次尝试不同的方法和参数,以获取最优的特征子集。特征选择方法选择:根据具体问题和数据特点选择合适的特征选择方法。
2023-12-25 15:15:59
420
1
原创 特征工程 -- 数据分桶
数据的特征内的值跨度可能比较大,对有监督和无监督中如k-means聚类使用欧式距离作为相似度函数来测量数据点之间的相似度,都会造成大吃小的影响,其中一种解决方法是对计数值进行区间量化即数据分桶也叫做数据分箱,然后使用量化结果。改善模型的泛化能力:由于数据分桶将连续型数据转化为离散型数据,使得模型在学习过程中可以更好地捕捉数据的不同特征和模式,从而提高模型的泛化能力。降低模型对异常值的敏感性:数据分桶可以将连续型数据转化为离散型数据,在离散化后,异常值会被分到较少的分桶中,从而降低异常值对模型的影响。
2023-12-25 13:58:14
1075
1
原创 数据分析流程
模型评估与优化:对建立的模型进行评估,根据评估结果进行模型的优化和调整,提高模型的准确性和预测能力。数据清洗与预处理:对收集到的数据进行清洗和预处理,包括处理缺失值、异常值、重复值,进行数据转换、格式化等操作。在应用模型时,需要考虑模型的效果和可靠性,同时也需要将模型的结果进行解释和呈现,以便让业务部门或者决策者能够理解和应用。收集数据:收集与问题相关的数据,确定数据源,包括内部数据,外部数据,公开数据,商业数据等。常用的结果呈现方式包括可视化、报告、PPT等,需要根据不同的需求和场景选择不同的呈现方式。
2023-12-25 10:42:03
914
1
空空如也
python,flask_session.sessions
2025-02-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人