【实测】单卡跑满血版DeepSeek|CSGHub集成KTransformers

近日,CSGHub集成了 KTransformers框架,为开发者提供了一种超低成本的大模型推理方案,使AI模型能够在低端硬件上高效运行,而无需依赖昂贵的高端GPU资源。

KTransformers 推理引擎

KTransformers 是由清华大学 KVCache.AI 团队与 APPROACHING.AI 合作开发的开源项目,专注于为研究者和开发者提供本地部署的解决方案。 它旨在降低大模型推理的资源占用,提升易用性,并提供本地推理友好的环境,让大模型推理更轻量。KTransformers 兼容 Hugging Face Transformers API,并支持 OpenAI 和 Ollama 等标准 RESTful API,这使得开发者能够在消费级硬件上轻松运行大语言模型,而无需高端 GPU 集群或昂贵的云端服务。

技术案例展示

本地671B DeepSeek-Coder-V3/R1高效推理:仅使用14GB VRAM和382GB DRAM量化版部署Q4_K_M版本。

硬件需求:

    • 显存(VRAM):14GB
    • 内存(DRAM):382GB
    • 部署环境:支持桌面级硬件(无需 GPU 集群)

性能基准测试

指标KTransformers 性能(tokens/s)对比基线(llama.cpp 2×32核)加速倍数
预填充速度54.21(32核) → 74.36(双路 2×32核) → **286.55**(V0.3 AMX优化)10.3127.79×
解码速度8.73(32核) → 11.26(双路 2×32核) → **13.69**(V0.3 专家选择)4.513.03×

KTransformers 的解码速度比 llama.cpp 提升高达 3.03 。在 消费级桌面硬件(24GB VRAM)上实现 671B参数 的DeepSeek-Coder-V3/R1量化模型(Q4_K_M)全量推理,打破千亿级模型必须依赖高端GPU集群的传统限制。

KTransformers 的核心技术特性

异构计算: 支持 GPU 和 CPU 协同工作,灵活分配计算任务,充分利用硬件资源。

性能优化: 采用量化内核和稀疏注意力机制,显著提升长上下文推理效率,降低内存占用。

成本效益: 能够在低成本硬件上运行大型模型,例如,只需 24GB VRAM 的显卡即可运行 DeepSeek-R1 等,大幅降低了硬件成本。

在TechNode “KTransformers enables DeepSeek-R1 with low-cost graphics card” 实测数据显示,搭载KTransformers的RTX 4090D(24GB显存)可流畅运行DeepSeek-R1-671B模型,预处理速度达286 tokens/秒,生成速度14 tokens/秒,硬件成本低于 70,000 RMB,较传统A100/H100方案直降95%以上

KTransformers跑DeepSeek实测

单卡启动DeepSeek R1 需要的资源:

选择好模型后,一键启动

GPU Memory 只占用12G左右

将接口集到CSGChat中,‌DeepSeek满血测试题实测

CSGHub 集成 KTransformers

CSGHub 作为企业级大模型资产管理与应用平台,致力于为开发者和企业提供一站式大模型管理、推理与部署解决方案。 此次集成 KTransformers 后,用户可以直接在 CSGHub 平台上选择 KTransformers 作为推理引擎,享受更快的推理速度、更低的资源消耗,同时保持对主流模型的兼容性。

OpenCSG社区用户可以直接在社区的专属实例页面使用 KTransformers 作为推理引擎,也可以自己下载部署 CSGHub,在本地环境中使用 KTransformers。

释放本地推理的强大潜力

KTransformers 让大模型推理不再受限于云计算平台。 通过 CSGHub 集成 KTransformers,核心优势:

成本优化: 利用 KTransformers 优化的内核,即使在消费级硬件上也能运行大型 LLM,显著降低硬件成本。

简化部署: CSGHub 提供简单易用的界面,让您轻松部署和管理基于 KTransformers 的模型,告别繁琐的配置。

安全性提升: 将敏感数据保留在本地环境中,降低云端推理带来的安全风险。

社区支持: OpenCSG 社区的用户可以在专属实例页面使用 KTransformers,也可以选择本地部署 CSGHub,根据自身需求定制环境。

CSGHub 多引擎支持:满足多样化推理需求

CSGHub 目前集成了 VLLM、SGLang、TGI、llama.cpp、KTransformers、MindIE 六大文生文推理引擎,涵盖了高吞吐量、高效缓存、低延迟本地推理、分布式部署等不同特点,满足各种模型推理需求。

推理引擎主要特点适用场景
VLLM高吞吐量、分页注意力管理、支持 FlashAttention、广泛硬件兼容大规模生产级部署:适用于大规模推理任务,追求极致吞吐
SGLang高效后端优化、支持 RadixAttention、灵活的前端语言、适配多模态大规模生产级部署:适用于复杂提示、多模态输入和链式调用
TGI生产级稳定性、支持流式输出、量化优化、多种 LLM 支持高兼容性平台部署:适用于生产环境部署,确保低延迟推理
llama.cpp轻量级、适用于 CPU、离线本地运行、高效 C++ 实现低资源轻量部署:适用于资源受限环境和隐私要求较高的场景
KTransformers低延迟高吞吐、优化 KV 缓存、兼容多个计算后端超低资源部署:适用于高性能推理,如对话系统和长文本生成
MindIE专为 Ascend 设备优化、高效算子融合、低时延高吞吐华为算力部署:适用于 Ascend AI 计算场景,如企业级推理和云端部署

如何选择合适的推理引擎?

  1. 追求极致吞吐量和可扩展性? VLLM 和 SGLang 是大规模生产部署的首选。
  2. 需要高稳定性和可靠性? TGI 是生产环境的最佳选择,确保低延迟推理。
  3. 算力资源有限且注重隐私? llama.cpp 适用于离线、CPU 环境,注重资源效率和数据安全。
  4. 希望低成本、高性能地运行 LLM? KTransformers 让你在普通硬件上也能获得出色的推理体验。
  5. 使用华为 Ascend 平台? MindIE 专为 Ascend 设备优化,性能更上一层楼。

展望未来

OpenCSG社区将持续创新,引领大模型推理新方向。CSGHub 将持续迭代优化推理引擎生态,不断引入更多高效推理引擎,以全面适配多样化的应用场景。OpenCSG致力于降低大模型使用门槛,帮助开发者在不同算力环境下灵活部署模型,并提供高效、可定制的推理能力。我们的愿景是打造最强大、最通用的 LLM 应用基座,为客户提供最具性价比的模型基础

参考链接

KTransformers开源项目:https://github.com/kvcache-ai/ktransformers

技术细节:https://zhuanlan.zhihu.com/p/714877271

TechNode文章:https://technode.com/2025/02/17/tsinghua-universitys-ktransformers-enables-full-powered-deepseek-r1-with-low-cost-graphics-card/

CSGHub开源项目:https://github.com/OpenCSGs/CSGHub

OpenCSG官网:https://opencsg.com/

<think>好的,用户现在想了解DeepSeek-R1-Lite-Preview它的满血之间的区别。我需要先回想一下之前给出的回答内容,确保这次的信息准确且一致。首先,我应该明确这两个本的主要差异,包括模型规模、性能、应用场景、计算资源消耗、功能特性以及发布状态。 用户可能是在选择适合自己需求的模型,所以需要区分Lite满血的不同点。他们可能关心哪个本更适合他们的计算资源,或者哪个在特定任务上表现更好。此外,用户可能对“预览”满血”的命名有疑问,需要解释这两个本的目的定位。 我需要检查是否有遗漏的信息,比如具体的参数大小、示例任务中的性能比较,或者是否有官方发布的最新消息。同时,要确保用词准确,避免误解,比如“满血”可能指的是功能更全面的本,而Lite则是轻量化的。 可能用户需要进一步的技术细节,比如训练数据量、支持的框架、API接口等,但根据之前的回答,可能这些信息未提及,所以需要说明基于公开信息的总结,并建议查阅官方文档获取更多细节。 最后,保持回答结构清晰,分点说明,方便用户快速比较两者的区别。确保语言简洁,避免专业术语过多,让不同技术背景的用户都能理解。</think>关于 **DeepSeek-R1-Lite-Preview** **“满血”** 的区别,目前公开信息有限,但基于常见的模型本划分逻辑,可以推测两者主要在以下方面存在差异: --- ### 1. **模型规模与性能** - **Lite-Preview(轻量预览)** - 可能是参数规模较小的本,推理速度更快,资源消耗低。 - 性能可能针对通用任务进行优化,适合快速测试或轻量级场景(如移动端、边缘设备)。 - **满血(完整)** - 参数规模更大,功能更全面,通常在复杂任务(如长文本理解、多轮对话、逻辑推理)中表现更强。 - 可能支持更多定制化功能或行业垂直领域优化。 --- ### 2. **应用场景** - **Lite-Preview** - 适合对计算资源敏感的场景(如实时交互、低功耗设备)。 - 可作为技术预览,供开发者快速体验模型基础能力。 - **满血** - 面向企业级或高要求的应用场景(如深度数据分析、复杂决策支持)。 - 可能提供更高的准确率上下文理解能力。 --- ### 3. **计算资源消耗** - **Lite-Preview** - 显存算力需求较低,可能在消费级GPU甚至CPU上运行。 - **满血** - 需要更强的硬件支持(如高性能GPU集群),适合云端部署或专业计算设备。 --- ### 4. **功能特性** - **Lite-Preview** - 可能简化部分功能(如长文本生成限制、多模态支持等)。 - **满血** - 支持更长的上下文窗口(如 128K tokens 以上)、更丰富的指令跟随复杂任务处理。 --- ### 5. **发布状态** - **Lite-Preview** - 通常作为早期体验开源本发布,供社区测试反馈。 - **满血** - 可能是商业化本,通过API或企业合作提供,功能更稳定完善。 --- ### 总结建议 - **选择 Lite **:如果需求侧重轻量化、低成本或初步验证。 - **选择满血**:若追求极致性能,且拥有足够算力支持复杂任务。 具体差异建议参考深度求索(DeepSeek)的官方技术文档或白皮书,以获取准确参数实测数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值