神经网络(Neural Networks)是构建现代人工智能(尤其是深度学习)模型的核心结构。不同的神经网络结构适用于不同的任务场景。
✅ 一、常见的神经网络类型(分类 + 应用)
1. 前馈神经网络(Feedforward Neural Network, FNN)
-
📌 特点:数据从输入层→隐藏层→输出层,一次性前向传播,不含循环
-
📦 应用:简单分类、回归问题(如手写数字识别)
-
🧠 代表结构:多层感知机(MLP)
2. 卷积神经网络(Convolutional Neural Network, CNN)
-
📌 特点:使用卷积核提取局部特征,参数少,适合处理图像
-
📦 应用:图像分类、目标检测、图像分割、语音识别
-
🧠 代表结构:LeNet、AlexNet、VGG、ResNet、EfficientNet
-
✨ 扩展结构:
-
空间金字塔池化(SPP)
-
注意力机制(SE、CBAM)
-
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
3. 循环神经网络(Recurrent Neural Network, RNN)
-
📌 特点:适用于处理序列数据,有“记忆”功能(通过隐藏状态)
-
📦 应用:文本生成、语言建模、时间序列预测
-
🧠 常用变种:
-
LSTM(长短期记忆网络)
-
GRU(门控循环单元)
-
-
📌 缺点:训练慢、梯度消失,长序列难建模
4. 自编码器(AutoEncoder, AE)
-
📌 特点:无监督学习,将输入压缩成低维向量,再重建
-
📦 应用:图像压缩、异常检测、去噪、自监督预训练
-
🧠 变种:
-
去噪自编码器(Denoising AE)
-
稀疏自编码器(Sparse AE)
-
变分自编码器(VAE)👉 图像生成领域常用
-
5. 生成对抗网络(Generative Adversarial Network, GAN)
-
📌 特点:由“生成器”和“判别器”组成的博弈结构
-
📦 应用:图像生成、人脸合成、风格迁移、超分辨率
-
🧠 经典模型:
-
DCGAN、StyleGAN、CycleGAN、Pix2Pix
-
6. 图神经网络(Graph Neural Network, GNN)
-
📌 特点:处理图结构数据,节点之间信息传播(邻居聚合)
-
📦 应用:社交网络、知识图谱、推荐系统、分子结构预测
-
🧠 代表结构:
-
GCN(图卷积网络)
-
GAT(图注意力网络)
-
GraphSAGE
-
7. Transformer 与注意力机制网络
-
📌 特点:基于“自注意力机制”,适合大规模并行计算,解决长序列问题
-
📦 应用:自然语言处理(NLP)、图像理解、语音处理
-
🧠 代表结构:
-
Transformer(原始结构)
-
BERT(编码器结构)
-
GPT(解码器结构)
-
Vision Transformer(ViT,用于图像)
-
8. 混合神经网络结构
-
将不同类型组合形成更强大的网络,例如:
-
CNN + RNN(图像→文本生成)
-
CNN + Transformer(视觉语言模型)
-
AE + GAN(生成更真实图像)
-
✅ 二、神经网络的选择建议(任务驱动)
任务类型 | 推荐网络 |
---|---|
图像识别 | CNN / ViT |
文本分类 | RNN / LSTM / Transformer |
语音识别 | RNN / Transformer |
文本生成 | LSTM / GPT / T5 |
图像生成 | GAN / VAE / Diffusion |
结构化图数据分析 | GNN |
异常检测 / 压缩 | AE / VAE |
🔧 三、辅助模块(可以叠加在各种网络上)
-
🔹 注意力机制(Attention / Self-Attention)
→ 提高网络对关键信息的关注能力 -
🔹 残差连接(Residual Block)
→ 解决深层网络梯度消失(如 ResNet) -
🔹 归一化层(BatchNorm / LayerNorm)
→ 提高训练稳定性和收敛速度 -
🔹 正则化方法(Dropout / L2)
→ 防止过拟合
📘 总结
神经网络就像“积木”,根据任务选择合适的结构并组合,是深度学习建模的核心技能。
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】