神经网络有哪几种?8大神经网络模型一文带你读懂

神经网络(Neural Networks)是构建现代人工智能(尤其是深度学习)模型的核心结构。不同的神经网络结构适用于不同的任务场景。

✅ 一、常见的神经网络类型(分类 + 应用)

1. 前馈神经网络(Feedforward Neural Network, FNN)

  • 📌 特点:数据从输入层→隐藏层→输出层,一次性前向传播,不含循环

  • 📦 应用:简单分类、回归问题(如手写数字识别)

  • 🧠 代表结构:多层感知机(MLP)


2. 卷积神经网络(Convolutional Neural Network, CNN)

  • 📌 特点:使用卷积核提取局部特征,参数少,适合处理图像

  • 📦 应用:图像分类、目标检测、图像分割、语音识别

  • 🧠 代表结构:LeNet、AlexNet、VGG、ResNet、EfficientNet

  • ✨ 扩展结构:

    • 空间金字塔池化(SPP)

    • 注意力机制(SE、CBAM)

免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!

【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】

3. 循环神经网络(Recurrent Neural Network, RNN)

  • 📌 特点:适用于处理序列数据,有“记忆”功能(通过隐藏状态)

  • 📦 应用:文本生成、语言建模、时间序列预测

  • 🧠 常用变种:

    • LSTM(长短期记忆网络)

    • GRU(门控循环单元)

  • 📌 缺点:训练慢、梯度消失,长序列难建模


4. 自编码器(AutoEncoder, AE)

  • 📌 特点:无监督学习,将输入压缩成低维向量,再重建

  • 📦 应用:图像压缩、异常检测、去噪、自监督预训练

  • 🧠 变种:

    • 去噪自编码器(Denoising AE)

    • 稀疏自编码器(Sparse AE)

    • 变分自编码器(VAE)👉 图像生成领域常用


5. 生成对抗网络(Generative Adversarial Network, GAN)

  • 📌 特点:由“生成器”和“判别器”组成的博弈结构

  • 📦 应用:图像生成、人脸合成、风格迁移、超分辨率

  • 🧠 经典模型:

    • DCGAN、StyleGAN、CycleGAN、Pix2Pix


6. 图神经网络(Graph Neural Network, GNN)

  • 📌 特点:处理图结构数据,节点之间信息传播(邻居聚合)

  • 📦 应用:社交网络、知识图谱、推荐系统、分子结构预测

  • 🧠 代表结构:

    • GCN(图卷积网络)

    • GAT(图注意力网络)

    • GraphSAGE


7. Transformer 与注意力机制网络

  • 📌 特点:基于“自注意力机制”,适合大规模并行计算,解决长序列问题

  • 📦 应用:自然语言处理(NLP)、图像理解、语音处理

  • 🧠 代表结构:

    • Transformer(原始结构)

    • BERT(编码器结构)

    • GPT(解码器结构)

    • Vision Transformer(ViT,用于图像)


8. 混合神经网络结构

  • 将不同类型组合形成更强大的网络,例如:

    • CNN + RNN(图像→文本生成)

    • CNN + Transformer(视觉语言模型)

    • AE + GAN(生成更真实图像)


✅ 二、神经网络的选择建议(任务驱动)

任务类型推荐网络
图像识别CNN / ViT
文本分类RNN / LSTM / Transformer
语音识别RNN / Transformer
文本生成LSTM / GPT / T5
图像生成GAN / VAE / Diffusion
结构化图数据分析GNN
异常检测 / 压缩AE / VAE

🔧 三、辅助模块(可以叠加在各种网络上)

  • 🔹 注意力机制(Attention / Self-Attention)
    → 提高网络对关键信息的关注能力

  • 🔹 残差连接(Residual Block)
    → 解决深层网络梯度消失(如 ResNet)

  • 🔹 归一化层(BatchNorm / LayerNorm)
    → 提高训练稳定性和收敛速度

  • 🔹 正则化方法(Dropout / L2)
    → 防止过拟合


📘 总结

神经网络就像“积木”,根据任务选择合适的结构并组合,是深度学习建模的核心技能。

免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!

【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值