生成对抗网络(GAN,Generative Adversarial Networks)是一种深度学习模型,通过生成器和判别器两个神经网络的对抗训练,实现数据生成与模拟。其核心思想源于博弈论中的二人零和博弈,以下从组成结构、工作原理、应用领域等方面展开介绍:
组成结构
- 生成器(Generator):接收随机噪声作为输入,通过一系列神经网络层对噪声进行变换和处理,最终输出与真实数据相似的样本。可以把生成器想象成一个“造假者”,不断尝试创造出足以以假乱真的“赝品”。
- 判别器(Discriminator):接收真实数据和生成器生成的数据作为输入,通过神经网络对数据特征进行提取和分析,输出一个表示数据真实性的概率值,类似于一位经验丰富的“鉴别专家”,其任务是判断输入的数据是真实数据集中的数据还是生成器生成的数据。
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
工作原理
- 对抗训练过程:在训练过程中,生成器和判别器相互对抗、相互协调。先训练判别器,使其能够准确区分真实数据和生成器生成的数据;然后训练生成器,使其生成的数据能够通过判别器的检测。生成器努力生成更逼真的数据,试图欺骗判别器;而判别器则不断提高自己的鉴别能力,避免被生成器欺骗。这种对抗过程持续进行,直到生成器生成的数据能够以假乱真,判别器无法准确区分真实数据和生成数据为止,此时GAN达到一种动态平衡,生成器也就学习到了真实数据的分布。
- 目标函数:GAN的目标函数定义了生成器和判别器的优化目标,基于二人零和博弈的思想。
应用领域
- 图像生成与处理
- 生成图像数据集:可为MNIST手写数码数据集、CIFAR - 10小件图片数据集、多伦多人像数据集等生成新案例。
- 生成特定类型图像:能生成逼真的人脸照片、物品和场景案例、动画角色等。
- 图像转换:可执行许多图像转换任务,如将语义图像转化成城市和建筑景观图片、将卫星图像转化成谷歌地图、将白天景观转化成夜晚景观、将黑白图片转化成彩色图片、将素描转化成彩色图片等;还能将图片转化成艺术绘画风格、将马的图片转化成斑马图、将夏景转化成冬景等。
- 图像修复:利用GAN对损坏或丢失的图像部分进行修复,恢复图像的完整性。
- 超分辨率重建:使用GAN将低分辨率图像重建为高分辨率图像,提高图像的清晰度。
- 文本 - 图片转化:运用StackGAN将对于简单物体(如花鸟)的文字描述转化为现实图片。
- 语义图像 - 图片转化:使用条件性GAN根据语义图像或素描生成现实图片,如根据语义图像合成城市景观图片、卧室图片、人脸图片等。
- 生成正面人像图片:使用GAN根据特定角度的人脸生成正面人像图片。
- 医疗领域:生成合成的医疗影像数据,帮助提高诊断的准确性和效率。
- 游戏开发:用于生成游戏中的图像和纹理,提升游戏画面的真实感和多样性。
- 脑电域适应:在脑电信号处理中,不同实验条件、个体特性或硬件设备的差异会导致域间分布不一致的问题,GAN可以通过特征映射与对抗学习来实现跨域特征对齐,从而提高模型的域适应能力,如跨被试脑电适应、跨任务或设备适应等。